
The 1980 ACM Turing Award Lecture 
Delivered at ACM '80, Nashville, Tennessee, October 27, 1980 

The 1980 ACM Turing Award was presented to Charles Antony Richard Hoare, 
Professor of Computat ion at the University of Oxford, England, by Walter Carlson, 
Chairman of the Awards committee, at the ACM Annual Conference in Nashville, 
Tennessee, October 27, 1980. 

Professor Hoare was selected by the General Technical Achievement Award 
Committee for his fundamental contributions to the definition and design of program- 
ming languages. His work is characterized by an unusual combination of insight, 
originality, elegance, and impact. He is best known for his work on axiomatic 
definitions of programming languages through the use of techniques popularly 
referred to as axiomatic semantics. He developed ingenious algorithms such as 
Quicksort and was responsible for inventing and promulgating advanced data struc- 
turing techniques in scientific programming languages. He has also made important 
contributions to operating systems through the study of monitors. His most recent 
work is on communicating sequential processes. 

C.A.R. I-Ioare Prior to his appointment  to the University of Oxford in 1977, Professor Hoare was 
Professor of Computer  Science at The Queen's University in Belfast, Ireland from 
1968 to 1977 and was a Visiting Professor at Stanford University in 1973. From 1960 

to 1968 he held a number  of positions with Elliot Brothers, Ltd., England. 
Professor Hoare has published extensively and is on the editorial boards of a number  of the world's foremost 

computer science journals. In 1973 he received the ACM Programming Systems and Languages Paper Award. 
Professor Hoare became a Distinguished Fellow of the British Computer  Society in 1978 and was awarded the degree 
of Doctor of Science Honoris Causa by the University of Southern California in 1979. 

The Turing Award is the Association for Computing Machinery's highest award for technical contributions to the 
computing community. It is presented each year in commemorat ion of Dr. A. M. Turing, an English mathematician 
who made many  important contributions to the computing sciences. 

The Emperor's Old Clothes 
Charles Antony Richard Hoare 

Oxford University, England 

The author recounts his experiences in the implemen- 
tation, design, and standardization of computer program- 
ruing languages, and issues a warning for the future. 

Key Words and Phrases: programming languages, 
history of programming languages, lessons for the future 

CR Categories: 1.2, 2.11, 4.2 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

Author's present address: C. A. R. Hoare, 45 Banbury Road, 
Oxford OX2 6PE, England. 
© 1981 ACM 0001-0782/81/0200-0075 $00.75. 

75 

My first and most pleasant duty in this lecture is to 
express my profound gratitude to the Association for 
Computing Machinery for the great honor which they 
have bestowed on me and for this opportunity to address 
you on a topic of  my choice. What  a difficult choice it is! 
My scientific achievements, so amply recognized by this 
award, have already been amply described in the scien- 
tific literature. Instead of  repeating the abstruse techni- 
calities of  my trade, I would like to talk informally about 
myself, my personal experiences, my hopes and fears, 
my modest successes, and my rather less modest failures. 
I have learned more from my failures than can ever be 
revealed in the cold print of  a scientific article and now 
I would like you to learn from them, too. Besides, failures 

Communications February 1981 
of Volume 24 
the ACM Number 2 



are much more fun to hear about afterwards; they are 
not so funny at the time. 

I start my story in August 1960, when I became a 
programmer with a small computer manufacturer, a 
division of  Elliott Brothers (London) Ltd., where in the 
next eight years I was to receive my primary education 
in computer science. My first task was to implement for 
the new Elliot 803 computer, a library subroutine for a 
new fast method of internal sorting just invented by 
Shell. I greatly enjoyed the challenge of  maximizing 
efficiency in the simple decimal-addressed machine code 
of  those days. My boss and tutor, Pat Shackleton, was 
very pleased with my completed program. I then said 
timidly that I thought I had invented a sorting method 
that would usually run faster than SHELLSORX, without 
taking much extra store. He bet me sixpence that I had 
not. Although my method was very difficult to explain, 
he finally agreed that I had won my bet. 

I wrote several other tightly coded library subroutines 
but after six months I was given a much more important 
task-- that  of  designing a new advanced high level pro- 
gramming language for the company's next computer, 
the Elliott 503, which was to have the same instruction 
code as the existing 803 but run sixty times faster. In 
spite of  my education in classical languages, this was a 
task for which I was even less qualified than those who 
undertake it today. By great good fortune there came 
into my hands a copy of  the Report on the International 
Algorithmic Language ALGOL 60. Of course, this lang- 
uage was obviously too complicated for our customers. 
How could they ever understand all those begins and 
ends when even our salesmen couldn't? 

Around Easter 1961, a course on ALGOL 60 was 
offered in Brighton, England, with Peter Naur, Edsger 
W. Dijkstra, and Peter Landin as tutors. I attended this 
course with my colleague in the language project, Jill 
Pym, our divisional Technical Manager, Roger Cook, 
and our Sales Manager, Paul King. It was there that I 
first learned about recursive procedures and saw how to 
program the sorting method which I had earlier found 
such difficulty in explaining. It was there that I wrote 
the procedure, immodestly named QUICKSORX, on which 
my career as a computer scientist is founded. Due credit 
must be paid to the genius of  the designers of  ALGOL 60 
who included recursion in their language and enabled 
me to describe my invention so elegantly to the world. I 
have regarded it as the highest goal of programming 
language design to enable good ideas to be elegantly 
expressed. 

After the ALGOL course in Brighton, Roger Cook was 
driving me and my colleagues back to London when he 
suddenly asked, "Instead of  designing a new language, 
why don't  we just implement ALGOL 60?" We all instantly 
agreed-- in  retrospect, a very lucky decision for me. But 
we knew we did not have the skill or experience at that 
time to implement the whole language, so I was com- 
missioned to design a modest subset. In that design I 

adopted certain basic principles which I believe to be as 
valid today as they were then. 

(1) The first principle was security: The principle that 
every syntactically incorrect program should be rejected 
by the compiler and that every syntactically correct 
program should give a result or an error message that 
was predictable and comprehensible in terms of  the 
source language program itself. Thus no core dumps 
should ever be necessary. It was logically impossible for 
any source language program to cause the computer to 
run wild, either at compile time or at run time. A 
consequence of  this principle is that every occurrence of  
every subscript of  every subscripted variable was on 
every occasion checked at run time against both the 
upper and the lower declared bounds of  the array. Many 
years later we asked our customers whether they wished 
us to provide an option to switch off  these checks in the 
interests of  efficiency on production runs. Unanimously, 
they urged us not to - - they  already knew how frequently 
subscript errors occur on production runs where failure 
to detect them could be disastrous. I note with fear and 
horror that even in 1980, language designers and users 
have not learned this lesson. In any respectable branch 
of  engineering, failure to observe such elementary pre- 
cautions would have long been against the law. 

(2) The second principle in the design of the imple- 
mentation was brevity of the object code produced by the 
compiler and compactness of run time working data. There 
was a clear reason for this: The size of  main storage on 
any computer is limited and its extension involves delay 
and expense. A program exceeding the limit, even by 
one word, is impossible to run, especially since many of  
our customers did not intend to purchase backing stores. 

This principle of  compactness of  object code is even 
more valid today, when processors are trivially cheap in 
comparison with the amounts of  main store they can 
address, and backing stores are comparatively even more 
expensive and slower by many orders of  magnitude. I f  
as a result of  care taken in implementation the available 
hardware remains more powerful than may seem nec- 
essary for a particular application, the applications pro- 
grammer can nearly always take advantage of  the extra 
capacity to increase the quality of  his program, its sim- 
plicity, its ruggedness, and its reliability. 

(3) The third principle of  our design was that the entry 
and exit conventions for procedures and functions should 
be as compact and efficient as for tightly coded machine- 
code subroutines. I reasoned that procedures are one of  
the most powerful features of  a high level language, in 
that they both simplify the programming task and 
shorten the object code. Thus there must be no impedi- 
ment to their frequent use. 

(4) The fourth principle was that the compiler should 
use only a single pass. The compiler was structured as a 
collection of  mutually recursive procedures, each capable 

76 Communicat ions  February 1981 
of  Volume 24 
the ACM Number  2 



of analyzing and translating a major syntactic unit of  the 
language--a statement, an expression, a declaration, and 
so on. It was designed and documented in ALGOL 60, and 
then coded into decimal machine code using an explicit 
stack for recursion. Without the ALGOL 60 concept of  
recursion, at that time highly controversial, we could not 
have written this compiler at all. 

I can still recommend single-pass top-down recursive 
descent both as an implementation method and as a 
design principle for a programming language. First, we 
certainly want programs to be read bypeople and people 
prefer to read things once in a single pass. Second, for 
the user of  a time-sharing or personal computer system, 
the interval between typing in a program (or amend- 
ment) and starting to run that program is wholly unpro- 
ductive. It can be minimized by the high speed of  a single 
pass compiler. Finally, to structure a compiler according 
to the syntax of  its input language makes a great contri- 
bution to ensuring its correctness. Unless we have abso- 
lute confidence in this, we can never have confidence in 
the results of  any of  our programs. 

To observe these four principles, I selected a rather 
small subset of  ALGOL 60. As the design and implemen- 
tation progressed, I gradually discovered methods of  
relaxing the restrictions without compromising any of  
the principles. So in the end we were able to implement 
nearly the full power of  the whole language, including 
even recursion, although several features were removed 
and others were restricted. 

In the middle of  1963, primarily as a result of  the 
work of  Jill Pym and Jeff Hillmore, the first version of  
our compiler was delivered. After a few months we 
began to wonder whether anyone was using the language 
or taking any notice of  our occasional reissue, incorpo- 
rating improved operating methods. Only when a cus- 
tomer had a complaint did he contact us and many of  
them had no complaints. Our customers have now 
moved on to more modern computers and more fashion- 
able languages but many have told me of  their fond 
memories of  the Elliott ALGOL System and the fondness 
is not due just to nostalgia, but to the efficiency, relia- 
bility, and convenience of  that early simple ALGOL Sys- 
tem. 

As a result of this work on ALGOL, in August 1962, I 
was invited to serve on the new Working Group 2.1 of 
IFIP, charged with responsibility for maintenance and 
development of  ALGOL. The group's first main task was 
to design a subset of  the language which would remove 
some of  its less successful features. Even in those days 
and even with such a simple language, we recognized 
that a subset could be an improvement on the original. 
I greatly welcomed the chance of  meeting and hearing 
the wisdom of  many of  the original language designers. 
I was astonished and dismayed at the heat and even 
rancor of  their discussions. Apparently the original de- 
sign of  ALGOL 60 had not proceeded in that spirit of  

dispassionate search for truth which the quality of  the 
language had led me to suppose. 

In order to provide relief from the tedious and ar- 
gumentative task of  designing a subset, the working 
group allocated one afternoon to discussing the features 
that should be incorporated in the next design of  the 
langu.age. Each member was invited to suggest the im- 
provement he considered most important. On October 
11, 1963, my suggestion was to pass on a request of our 
customers to relax the ALGOL 60 rule of  compulsory 
declaration of  variable names and adopt some reasonable 
default convention such as that of  FORTRAN. I was aston- 
ished by the polite but firm rejection of  this seemingly 
innocent suggestion: It was pointed out that the redun- 
dancy of  ALGOL 60 was the best protection against pro- 
gramming and coding errors which could be extremely 
expensive to detect in a running program and even more 
expensive not to. The story of  the Mariner space rocket 
to Venus, lost because of  the lack of  compulsory decla- 
rations in FORTRAN, was not to be published until later. 
I was eventually persuaded of  the need to design pro- 
gramming notations so as to maximize the number of  
errors which cannot be made, or if made, can be reliably 
detected at compile time. Perhaps this would make the 
text of  programs longer. Never mind! Wouldn't  you be 
delighted if your Fairy Godmother  offered to wave her 
wand over your program to remove all its errors and 
only made the condition that you should write out and 
key in your whole program three times! The way to 
shorten programs is to use procedures, not to omit vital 
declarative information. 

Among the other proposals for the development of  a 
new ALGOL was that the switch declaration of ALGOL 60 
should be replaced by a more general feature, namely an 
array of  label-valued variables and that a program 
should be able to change the values of  these variables by 
assignment. I was very much opposed to this idea, similar 
to the assigned, Go TO of  FORTRAN, because I had found 
a surprising number of  tricky problems in the implemen- 
tation of  even the simple labels and switches of  ALGOL 
60. I could see even more problems in the new feature 
including that of  jumping back into a block after it had 
been exited. I was also beginning to suspect that pro- 
grams that used a lot of  labels were more difficult to 
understand and get correct and that programs that as- 
signed new values to label variables would be even more 
difficult still. 

It occurred to me that the appropriate notation to 
replace the ALGOL 60 switch should be based on that of  
the conditional expression of  ALGOL 60, which selects 
between two alternative actions according to the value 
of  a Boolean expression. So I suggested the notation for 
a "case expression" which selects between any number 
of  alternatives according to the value of  an integer 
expression. That was my second language design pro- 
posal. I am still most proud of  it, because it raises 
essentially no problems either for the implementor, the 

77 Communications February 198 l 
of Volume 24 
the ACM Number 2 



programmer, or the reader of  a program. Now, after 
more than fifteen years, there is the prospect of interna- 
tional standardization of a language incorlJ~rating this 
notat ion--a  remarkably short interval compared with 
other branches of  engineering. 

Back again to my work at Elliott's. After the unex- 
pected success of our ALGOL Compiler, our thoughts 
turned to a more ambitious project: To provide a range 
of  operating system software for larger configurations of  
the 503 computer, with card readers, line printers, mag- 
netic tapes, and even a core backing store which was 
twice as cheap and twice as large as main store, but 
fifteen times slower. This was to be known as the Elliott 
503 Mark II software system. 

It comprised: 
(1) An assembler for a symbolic assembly language in 

which all the rest of  the software was to be written. 
(2) A scheme for automatic administration of  code 

and data overlays, either from magnetic tape or from 
core backing store. This was to be used by the rest of  the 
software. 

(3) A scheme for automatic buffering of  all input and 
output o n a n y  available peripheral device,--again, to be 
used by all the other software. 

(4) A filing system on magnetic tape with facilities for 
editing and job control. 

(5) A completely new implementation of  ALGOL 60, 
which removed all the nonstandard restrictions which 
we had imposed on our first implementation. 

(6) A compiler for FORTRAN as it was then. 

I wrote documents which described the relevant concepts 
and facilities and we sent them to existing and prospec- 
tive customers. Work started with a team of  fifteen 
programmers and the deadline for delivery was set some 
eighteen months ahead in March 1965. After initiating 
the design of  the Mark II software, I was suddenly 
promoted to the dizzying rank of  Assistant Chief Engi- 
neer, responsible for advanced development and design 
of the company's products, both hardware and software. 

Although I was still managerially responsible for the 
503 Mark II software, I gave it less attention than the 
company's new products and almost failed to notice 
when the deadline for its delivery passed without event. 
The programmers revised their implementation sched- 
ules and a new delivery date was set some three months 
ahead in June 1965. Needless to say, that day also passed 
without event. By this time, our customers were getting 
angry and my managers instructed me to take personal 
charge of  the project. I asked the senior programmers 
once again to draw up revised schedules, which again 
Showed that the software could be delivered within an- 
other three months. I desperately wanted to believe it 
but I just could not. I disregarded the schedules and 
began to dig more deeply into the project. 

It turned out that we had failed to make any overall 

78 

plans for the allocation of  our most limited resource--  
main storage. Each programmer expected this to be done 
automatically, either by the symbolic assembler or by 
the automatic overlay scheme. Even worse, we had failed 
to simply count the space used by our own software 
which was already filling the main store of  the computer, 
leaving no space for our customers to run their programs. 
Hardware address length limitations prohibited adding 
more main storage. 

Clearly, the original specifications of  the software 
could not be met and had to be drastically curtailed. 
Experienced programmers and even managers were 
called back from other projects. We decided to concen- 
trate first on delivery of  the new compiler for ALGOL 60, 
which careful calculation showed would take another 
four months. I impressed upon all the programmers 
involved that this was no longer just a prediction; it was 
a promise; if they found they were not meeting their 
promise, it was their personal responsibility to fred ways 
and means of  making good. 

The programmers responded magnificently to the 
challenge. They worked nights and days to ensure com- 
pletion of  all those items of  software which were needed 
by the ALGOL compiler. To our delight, they met the 
scheduled delivery date; it was the first major item of  
working software produced by the company over a pe- 
riod of  two years. 

Our delight was short-lived; the compiler could not 
be delivered. Its speed of  compilation was only two 
characters per second which compared unfavorably with 
the existing version of  the compiler operating at about a 
thousand characters per second. We soon identified the 
cause of  the problem: It was thrashing between the main 
store and the extension core backing store which was 
fifteen times slower. It was easy to make some simple 
improvements, and within a week we had doubled the 
speed of  compilat ion--to four characters per second. In 
the next two weeks of  investigation and reprogramming, 
the speed was doubled again-- to  eight characters per 
second. We could see ways in which within a month this 
could be still further improved; but the amount of  repro- 
gramming required was increasing and its effectiveness 
was decreasing; there was an awful long way to go. The 
alternative of  increasing the size of  the main store so 
frequently adopted in later failures of  this kind was 
prohibited by hardware addressing limitations. 

There was no escape: The entire Elliott 503 Mark II 
software project had to be abandoned, and with it, over 
thirty man-years of  programming effort, equivalent to 
nearly one man's active working life, and I was respon- 
sible, both as designer and as manager, for wasting it. 

A meeting of  all our 503 customers was called and 
Roger Cook, who was then manager of  the computing 
division, explained to them that not a single word of  the 
long-promised software would ever be delivered to them. 
He adopted a very quiet tone of  delivery, which ensured 
that none of  the customers could interrupt, murmur in 

Communications February 1981 
of Volume 24 
the ACM Number 2 



the background, or even shuffle in their seats. I admired 
but could not share his calm. Over lunch our customers 
were kind to try to comfort me. They had realized long 
ago that software to the original specification could never 
have been delivered, and even if it had been, they would 
not have known how to use its sophisticated features, 
and anyway many such large projects get cancelled 
before delivery. In retrospect, I believe our customers 
were fortunate that hardware limitations had protected 
them from the arbitrary excesses of  our software designs. 
In the present day, users of  microprocessors benefit from 
a similar protection--but  not for much longer. 

At that time I was reading the early documents 
describing the concepts and features of  the newly an- 
nounced OS 360, and of  a new time-sharing project 
called Multics. These were far more comprehensive, 
elaborate, and sophisticated than anything I had imag- 
ined, even in the first version of  the 503 Mark II software. 
Clearly IBM and MIT must be possessed of  some secret 
of  successful software design and implementation whose 
nature I could not even begin to guess at. It was only 
later that they realized they could not either. 

So I still could not see how I had brought such a 
great misfortune upon my company. At the time I was 
convinced that my managers were planning to dismiss 
me. But no, they were intending a far more severe 
punishment. "O.K. Tony," they said. "You got us into 
this mess and now you're going to get us out." "But I 
don't  know how," I protested, but their reply was simple. 
"Well then, you'll have to fred out." They even expressed 
confidence that I could do so. I did not share their 
confidence. I was tempted to resign. It was the luckiest 
of  all my lucky escapes that I did not. 

Of course, the company did everything they could to 
help me. They took away my responsibility for hardware 
design and reduced the size of  my programming teams. 
Each of  my managers explained carefully his own theory 
of  what had gone wrong and all the theories were 
different. At last, there breezed into my office the most 
senior manager of  all, a general manager of  our parent 
company, Andrew St. Johnston. I was surprised that he 
had even heard of  me. "You know what went wrong?" 
he shouted--he always shouted--  "You let your pro- 
grammers do things which you yourself do not under- 
stand." I stared in astonishment. He was obviously out 
of  touch with present day realities. How could one person 
ever understand the whole of  a modem software product 
like the Elliott 503 Mark II software system? 

I realized later that he was absolutely right; he had 
diagnosed the true cause of  the problem and he had 
planted the seed of  its later solution. 

I still had a team of  some forty programmers and we 
needed to retain the good will of  customers for our new 
machine and even regain the confidence of  the customers 
for our old one. But what should we actually plan to do 
when we knew only one thing-- that  all our previous 
plans had failed? I therefore called an all-day meeting of  

our senior programmers on October 22, 1965, to thrash 
out the question between us. I still have the notes of  that 
meeting. We first listed the recent major grievances of  
our customers: Cancellation of  products, failure to meet 
deadlines, excessive size of  software, " . . .  not justified by 
the usefulness of  the facilities provided," excessively slow 
programs, failure to take account of  customer feedback; 
"Earlier attention paid to quite minor requests of  our 
customers might have paid as great dividends of  goodwill 
as the success of  our most ambitious plans." 

We then listed our own grievances: Lack of  machine 
time for program testing, unpredictability of  machine 
time, lack of  suitable peripheral equipment, unreliability 
of  the hardware even when available, dispersion of  pro- 
gramming staff, lack of  equipment for keypunching of  
programs, lack of  firm hardware delivery dates, lack of  
technical writing effort for documentation, lack of  soft- 
ware knowledge outside of  the programming group, 
interference from higher managers who imposed deci- 
sions, " . . .  without a full realization of  the more intricate 
implications of  the matter," and overoptimism in the 
face of  pressure from customers and the Sales Depart- 
ment. 

But we did not seek to excuse our failure by these 
grievances. For example, we admitted that it was the 
duty of  programmers to educate their managers and 
other departments of  the company by " . . .  presenting the 
necessary information in a simple palatable form." The 
hope " . . .  that deficiencies in original program specifi- 
cations could be made up by the skill of  a technical 
writing depa r tmen t . . ,  was misguided; the design of  a 
program and the design of  its specification must be 
undertaken in parallel by the same person, and they 
must interact with each other. A lack of  clarity in speci- 
fication is one of  the surest signs of  a deficiency in the 
program it describes, and the two faults must be removed 
simultaneously before the project is embarked upon." I 
wish I had followed this advice in 1963; I wish we all 
would follow it today. 

My notes of  the proceedings of  that day in October 
1965 include a complete section devoted to failings 
within the software group; this section rivals the most 
abject self-abasement of  a revisionist official in the 
Chinese cultural revolution. Our main failure was over- 
ambition. "The goals which we have attempted have 
obviously proved to be far beyond our grasp." There was 
also failure in prediction, in estimation of  program size 
and speed, of  effort required, in planning the coordina- 
tion and interaction of  programs, in providing an early 
warning that things were going wrong. There were faults 
in our control of  program changes, documentation, liai- 
son with other departments, with our management, and 
with our customers. We failed in giving clear and stable 
definitions of  the responsibilities of  individual program- 
mers and project leaders,--Oh, need I go on? What was 
amazing was that a large team of highly intelligent 
programmers could labor so hard and so long on such 

79 Communications February 1981 
of Volume 24 
the ACM Number 2 



an unpromising project. You know, you shouldn't trust 
us intelligent programmers. We can think up such good 
arguments for convincing ourselves and each other of  
the utterly absurd. Especially don't believe us when we 
promise to repeat an earlier success, only bigger and 
better next time. 

The last section of  our inquiry into the failure dealt 
with the criteria of quality of software. "In the recent 
struggle to deliver any software at all, the first casualty 
has been consideration of  the quality of the software 
delivered. The quality of  software is measured by a 
number of totally incompatible criteria, which must be 
carefully balanced in the design and implementation of  
every program." We then made a fist of no less than 
seventeen criteria which has been published in a guest 
editorial in Volume 2 of  the journal, Software Practice 
and Experience. 

How did we recover from the catastrophe? First, we 
classified our 503 customers into groups, according to 
the nature and size of the hardware configurations which 
they had bought- - for  example, those with magnetic 
tapes were all in one group. We assigned to each group 
of  customers a small team of programmers and told the 
team leader to visit the customers to find out what they 
wanted; to select the easiest request to fulfil, and to make 
plans (but not promises) to implement it. In no case 
would we consider a request for a feature that would 
take more than three months to implement and deliver. 
The project leader would then have to convince me that 
the customers' request was reasonable, that the design of 
the new feature was appropriate, and that the plans and 
schedules for implementation were realistic. Above all, 
I did not allow anything to be done which I did not 
myself understand. It worked! The software requested 
began to be delivered on the promised dates. With an 
increase in our confidence and that of our customers, we 
were able to undertake fulfilling slightly more ambitious 
requests. Within a year we had recovered from the 
disaster. Within two years, we even had some moderately 
satisfied customers. 

Thus we muddled through by common sense and 
compromise to something approaching success. But I 
was not satisfied. I did not see why the design and 
implementation of an operating system should be so 
much more difficult than that of a compiler. This is the 
reason why I have devoted my later research to problems 
of  parallel programming and language constructs which 
would assist in clear structuring of  operating systems-- 
constructs such as monitors and communicating pro- 
cesses. 

While I was working at EUiotts', I became very 
interested in techniques for formal definition of  program- 
ming languages. At that time, Peter Landin and Chris- 
topher Strachey proposed to define a programming lan- 
guage in a simple functional notation, that specified the 
effect of each command on a mathematically defined 
abstract machine. I was not happy with this proposal 

because I felt that such a definition must incorporate a 
number of  fairly arbitrary representation decisions and 
would not be much simpler in principle than an imple- 
mentation of  the language for a real machine. As an 
alternative, I proposed that a programming language 
definition should be formalized as a set of  axioms, de- 
scribing the desired properties of programs written in the 
language. I felt that carefully formulated axioms would 
leave an implementation the necessary freedom to im- 
plement the language efficiently on different machines 
and enable the programmer to prove the correctness of  
his programs. But I did not see how to actually do it. I 
thought that it would need lengthy research to develop 
and apply the necessary techniques and that a university 
would be a better place to conduct such research than 
industry. So I applied for a chair in Computer Science 
at the Queen's University of Belfast where I was to spend 
nine happy and productive years. In October 1968, as I 
unpacked my papers in my new home in Belfast, I came 
across an obscure preprint of  an article by Bob Floyd 
entitled, "Assigning Meanings to Programs." What a 
stroke of  luck! At last I could see a way to achieve my 
hopes for my research. Thus I wrote my first paper on 
the axiomatic approach to computer programming, pub- 
lished in the Communications of the A CM in October 
1969. 

Just recently, I have discovered that an early advocate 
of  the assertional method of  program proving was none 
other than Alan Turing himself. On June 24, 1950 at a 
conference in Cambridge, he gave a short talk entitled, 
"Checking a Large Routine" which explains the idea 
with great clarity. "How can one check a large routine in 
the sense of making sure that it's right? In order that the 
man who checks may not have too difficult a task, the 
programmer should make a number of definite assertions 
which can be checked individually, and from which the 
correctness of  the whole program easily follows." 

Consider the analogy of checking an addition. If  the 
sum is given [just as a column of  figures with the answer 
below] one must check the whole at one sitting. But if 
the totals for the various columns are given,  [with the 
carries added in separately], the checker's work is much 
easier, being split up into the checking of  the various 
assertions [that each column is correctly added] and the 
small addition [of the carries to the total]. This principle 
can be applied to the checking of a large routine but we 
will illustrate the method by means of  a small routine 
viz. one to obtain n factorial without the use of  a multi- 
prier. Unfortunately there is no coding system suffi- 
ciently generally known to justify giving this routine in 
full, but a flow diagram will be sufficient for illustration. 
That  brings me back to the main theme of  my talk, the 
design of  programming languages. 

During the period, August 1962 to October 1966, I 
attended every meeting of  the IFIP ALGOL working 
group. After completing our labors on the IFIP ALGOL 
subset, we started on the design of  ALGOL X, the intended 

80 Communications February 1981 
of Volume 24 
the ACM Number 2 



successor to ALGOL 60. More suggestions for new features 
were made and in May 1965, Niklaus Wirth was com- 
missioned to collate them into a single language design. 
I was delighted by his draft design which avoided all the 
known defects of  ALGOL 60 and included several new 
features, all of  which could be simply and efficiently 
implemented, and safely and conveniently used. 

The description of  the language was not yet complete. 
I worked hard on making suggestions for its improve- 
ment and so did many other members of  our group. By 
the time of  the next meeting in St. Pierre de Chartreuse, 
France in October 1965, we had a draft of  an excellent 
and realistic language design which was published 
in June 1966 as "A Contribution to the Development of  
ALGOL", in the Communications of the A CM. 
It was implemented on the IBM 360 and given the title 
ALGOL W by its many happy users. It was not only a 
worthy successor of  ALGOL 60, it was even a worthy 
predecessor of  PASCAL. 

At the same meeting, the ALGOL committee had 
placed before it, a short, incomplete and rather incom- 
prehensible document, describing a different, more am- 
bitious and, to me, a far less attractive language. I was 
astonished when the working group, consisting of  all the 
best known international experts of  programming lan- 
guages, resolved to lay aside the commissioned draft on 
which we had all been working and swallow a line with 
such an unattractive bait. 

This happened just one week after our inquest on the 
503 Mark II software project. I gave desperate warnings 
against the obscurity, the complexity, and overambition 
of  the new design, but my warnings went unheeded. I 
conclude that there are two ways of  constructing a 
software design: One way is to make it so simple that 
there are obviously no deficiencies and the other way is 
to make it so complicated that there are no obvious 
deficiencies. 

The first method is far more difficult. It demands the 
same skill, devotion, insight, and even inspiration as the 
discovery of  the simple physical laws which underlie the 
complex phenomena of  nature. It also requires a willing- 
ness to accept objectives which are limited by physical, 
logical, and technological constraints, and to accept a 
compromise when conflicting objectives cannot be met. 
No committee will ever do this until it is too late. 

So it was with the ALGOL committee. Clearly the 
draft which it preferred was not yet perfect. So a new 
and fmal draft of  the new ALGOL language design was 
promised in three months' time; it was to be submitted 
to the scrutiny of  a subgroup of  four members including 
myself. Three months came and went, without a word of  
the new draft. After six months, the subgroup met in the 
Netherlands. We had before us a longer and thicker 
document, full of  errors corrected at the last minute, 
describing yet another but to me, equally unattractive 
language. Niklaus Wirth and I spent some time trying to 
get removed some of  the deficiencies in the design and 

81 

in the description, but in vain. The completed final draft 
of  the language was promised for the next meeting of  
the full ALGOL committee in three months time. 

Three months came and went- -not  a word of  the 
new draft appeared. After six months, in October 1966, 
the ALGOL working group met in Warsaw. It had before 
it an even longer and thicker document, full of  errors 
corrected at the last minute, describing equally obscurely 
yet another different, and to me, equally unattractive 
language. The experts in the group could not see the 
defects of  the design and they firmly resolved to adopt 
the draft, believing it would be completed in three 
months. In vain, I told them it would not. In vain, I 
urged them to remove some of  the technical mistakes of  
the language, the predominance of  references, the default 
type conversions. Far from wishing to simplify the lan- 
guage, the working group actually asked the authors to 
include even more complex features like overloading of  
operators and concurrency. 

When any new language design project is nearing 
completion, there is always a mad rush to get new 
features added before standardization. The rush is mad 
indeed, because it leads into a trap from which there is 
no escape. A feature which is omitted can always be 
added later, when its design and its implications are well 
understood. A feature which is included before it is fully 
understood can never be removed later. 

At last, in December 1968, in a mood of  black 
depression, I attended the meeting in Munich at which 
our long-gestated monster was to come to birth and 
receive the name ALGOL 68. By this time, a number of  
other members of  the group had become disillusioned, 
but too late: The committee was now packed with sup- 
porters of  the language, which was sent up for promul- 
gation by the higher committees of  IFIP. The best we 
could do was to send with it a minority report, stating 
our considered view that, " . . .  as a tool for the reliable 
creation of  sophisticated programs, the language was a 
failure." This report was later suppressed by IFIP, an act 
which reminds me of  the lines of  Hilaire Belloc, 

But scientists, who ought to know/Assure us that it must be so./ 
Oh, let us never, never doubt/What  nobody is sure about. 

I did not attend any further meetings of  that working 
group. I am pleased to report that the group soon came 
to realize that there was something wrong with their 
language and with its description; they labored hard for 
six more years to produce a revised description of  the 
language. It is a great improvement but I 'm afraid, that 
in my view, it does not remove the basic technical flaws 
in the design, nor does it begin to address the problem of  
its overwhelming complexity. 

Programmers are always surrounded by complexity; 
we cannot avoid it. Our applications are complex because 
we are ambitious to use our computers in ever more 
sophisticated ways. Programming is complex because of  

Communications February 1981 
of Volume 24 
the ACM Number 2 



the large number of conflicting objectives for each of our 
programming projects. If  our basic tool, the language in 
which we design and code our programs, is also compli- 
cated, the language itself becomes part of the problem 
rather than part of its solution. 

Now let me tell you about yet another overambitious 
language project. Between 1965 and 1970 I was a mem- 
ber and even chairman of the Technical Committee No. 
10 of the European Computer Manufacturers Associa- 
tion. We were charged first with a watching brief and 
then with the standardization of a language to end all 
languages, designed to meet the needs of all computer 
applications, both commercial and scientific, by the 
greatest computer manufacturer of all time. I had studied 
with interest and amazement, even a touch of amuse- 
ment, the four initial documents describing a language 
called NPL, which appeared between March 1 and No- 
vember 30, 1964. Each was more ambitious and absurd 
than the last in its wishful speculations. Then the lan- 
guage began to be implemented and a new series of 
documents began to appear at six-monthly intervals, 
each describing the final frozen version of the language, 
under its final frozen name PL/I .  

But to me, each revision of the document simply 
showed how far the initial F-level implementation had 
progressed. Those parts of the language that were not 
yet implemented were still described in free-flowing 
flowery prose giving promise of unalloyed delight. In the 
parts that had been implemented, the flowers had with- 
ered; they were choked by an undergrowth of explana- 
tory footnotes, placing arbitrary and unpleasant restric- 
tions on the use of each feature and loading upon a 
programmer the responsibility for controlling the com- 
plex and unexpected side-effects and interaction effects 
with all the other features of the language. 

At last, March 11, 1968, the language description was 
nobly presented to the waiting world as a worthy can- 
didate for standardization. But it was not. It had already 
undergone some seven thousand corrections and modi- 
fications at the hand of its original designers. Another 
twelve editions were needed before it was finally pub- 
lished as a standard in 1976. I fear that this was not 
because everybody concerned was satisfied with its de- 
sign, but because they were thoroughly bored and disil- 
lusioned. 

For as long as I was involved in this project, I urged 
that the language be simplified, if necessary by subset- 
ting, so that the professional programmer would be able 
to understand it and be able to take responsibility for 
the correctness and cost-effectiveness of his programs. I 
urged that the dangerous features such as defaults and 
ON- conditions be removed. I knew that it would be 
impossible to write a wholly reliable compiler for a 
language of this complexity and impossible to write a 
wholly reliable program when the correctness of each 
part of the program depends on checking that every 
other part of the program has avoided all the traps and 
pitfalls of the language. 

82 

At first I hoped that such a technically unsound 
project would collapse but I soon realized it was doomed 
to success. Almost anything in software can be imple- 
mented, sold, and even used given enough determina- 
tion. There is nothing a mere scientist can say that will 
stand against the flood of a hundred million dollars. But 
there is one quality that cannot be purchased in this 
way--and that is reliability. The price of reliability is the 
pursuit of the utmost simplicity. It is a price which the 
very rich find most hard to pay. 

All this happened a long time ago. Can it be regarded 
as relevant in a conference dedicated to a preview of the 
Computer Age that lies ahead? It is my gravest fear that 
it can. The mistakes which have made in the last twenty 
years are being repeated today on an even grander scale. 
I refer to a language design project which has generated 
documents entitled strawman, woodenman, tinman, iron- 
man, steelman, green and finally now ADA. This project 
has been initiated and sponsored by one of the world's 
most powerful organizations, the United States Depart- 
ment of Defense. Thus it is ensured of an influence and 
attention quite independent of its technical merits and 
its faults and deficiencies threaten us with far greater 
dangers. For none of the evidence we have so far can 
inspire confidence that this language has avoided any of 
the problems that have afflicted other complex language 
projects of the past. 

I have been giving the best of my advice to this 
project since 1975. At first I was extremely hopeful. The 
original objectives of the language, included reliability, 
readability of programs, formality of language definition, 
and even simplicity. Gradually these objectives have 
been sacrificed in favor of power, supposedly achieved 
by a plethora of features and notational conventions, 
many of them unnecessary and some of them, like ex- 
ception handling, even dangerous. We relive the history 
of the design of the motor car. Gadgets and glitter prevail 
over fundamental concerns of safety and economy. 

It is not too late! I believe that by careful pruning of  
the ADA language, it is still possible to select a very 
powerful subset that would be reliable and efficient in 
implementation and safe and economic in use. The 
sponsors of the language have declared unequivocally, 
however, that there shall be no subsets. This is the 
strangest paradox of the whole strange project. If  you 
want a language with no subsets, you must make it small. 

You include only those features which you know to 
be needed for every single application of the language 
and which you know to be appropriate for every single 
hardware configuration on which the language is imple- 
mented. Then extensions can be specially designed where 
necessary for particular hardware devices and for partic- 
ular applications. That is the great strength of PASCAL, 
that there are so few unnecessary features and almost no 
need for subsets. That is why the language is strong 
enough to support specialized extensions--Concurrent 
PASCAL for real time work, PASCAL PLUS for discrete 
event simulation, UESD PASCAL for microprocessor work 

Communications February 1981 
of Volume 24 
the ACM Number 2 



stations. If  only we could learn the right lessons from the 
successes of  the past, we would not need to learn from 
our failures. 

And so, the best of  my advice to the originators and 
designers of  ADA has been ignored. In this last resort, I 
appeal to you, representatives of the programming 
profession in the United States, and citizens concerned 
with the welfare and safety of  your own country and of  
mankind: Do not allow this language in its present state 
to be used in applications where reliability is critical, i.e., 
nuclear power stations, cruise missiles, early warning 
systems, anti-ballistic missile defense systems. The next 
rocket to go astray as a result of  a programming language 
error may not be an exploratory space rocket on a 
harmless trip to Venus: It may be a nuclear warhead 
exploding over one of  our own cities. An unreliable 
programming language generating unreliable programs 
constitutes a far greater risk to our environment and to 
our society than unsafe cars, toxic pesticides, or accidents 
at nuclear power stations. Be vigilant to reduce that risk, 
not to increase it. 

Let me not end on this somber note. To have our 
best advice ignored is the common fate of  all who take 
on the role of  consultant, ever since Cassandra pointed 
out the dangers of  bringing a wooden horse within the 
walls of  Troy. That reminds me of  a story I used to hear 
in my childhood. As far as I recall, its title was: 

The Emperor's Old Clothes 

Many years ago, there was an Emperor who was so 
excessively fond of  clothes that he spent all his money 
on dress. He did not trouble himself with soldiers, attend 
banquets, or give judgement in court. Of  any other king 
or emperor one might say, "He is sitting in council," but 
it was always said of  him, "The emperor is sitting in his 
wardrobe." And so he was. On one unfortunate occasion, 
he had been tricked into going forth naked to his chagrin 
and the glee of  his subjects. He resolved never to leave 
his throne, and to avoid nakedness, he ordered that each 
of  his many new suits of  clothes should be simply draped 
on top of  the old. 

Time passed away merrily in the large town that was 
his capital. Ministers and courtiers, weavers and tailors, 
visitors and subjects, seamstresses and embroiderers, 
went in and out of  the throne room about their various 
tasks, and they all exclaimed, "How magnificent is the 
attire of  our Emperor." 

One day the Emperor's oldest and most faithful 
Minister heard tell of  a most distinguished tailor who 
taught at an ancient institute of  higher stitchcraft, and 
who had developed a new art of  abstract embroidery 
using stitches so refined that no one could tell whether 
they were actually there at all. "These must indeed be 
splendid stitches," thought the minister. " I f  we can but 
engage this tailor to advise us, we will bring the adorn- 
ment of  our Emperor to such heights of  ostentation that 
all the world will acknowledge him as the greatest Em- 
peror there has ever been." 

So the honest old Minister engaged the master tailor 
at vast expense. The tailor was brought to the throne 
room where he made obeisance to the heap of  fine 
clothes which now completely covered the throne. All 
the courtiers waited eagerly for his advice. Imagine their 
astonishment when his advice was not to add sophisti- 
cation and more intricate embroidery to that which 
already existed, but rather to remove layers of  the finery, 
and strive for simplicity and elegance in place of  extrav- 
agant elaboration. "This tailor is not the expert that he 
claims," they muttered. "His wits have been addled by 
long contemplation in his ivory tower and he no longer 
understands the sartorial needs of  a modern Emperor." 
The tailor argued loud and long for the good sense of  his 
advice but could not make himself heard. Finally, he 
accepted his fee and returned to his ivory tower. 

Never to this very day has the full truth of  this story 
been told: That one fine morning, when the Emperor felt 
hot and bored, he extricated himself carefully from under 
his mountain of  clothes and is now living happily as a 
swineherd in another story. The tailor is canonized as 
the patron saint of  all consultants, because in spite of  the 
enormous fees that he extracted, he was never able to 
convince his clients of  his dawning realization that their 
clothes have no Emperor. 

83 Communications February 1981 
of Volume 24 
the ACM Number 2 


