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Abstract

This paper presents an adaptive XML parser that is
based on table-driven XML (TDX) parsing technology.
This technique can be used for developing extensible high-
performance Web services for large complex systems that
typically require extensible schemas. The parser integrates
scanning, parsing, and validation into a single-pass with-
out backtracking by utilizing compact tabular representa-
tions of schemas and a push-down automaton (PDA) at
runtime. The tabular forms are constructed from a set of
schemas or WSDL descriptions through the use of permuta-
tion grammar. The engine is implemented as a PDA-based,
table-driven driver, as a result, it is independent of XML
schemas. When XML schemas are updated or extended,
the tabular forms can be regenerated and populated to the
generic engine without requirement of redeployment of the
parser. This adaptive approach balances the need for per-
formance against the requirements of reconstruction and
redeployment of the Web services. Our experiments show
the adaptive parser usually demonstrates performance of 5
times faster than traditional validating parsers and perfor-
mance drop within 20% of the fastest fully compiled tradi-
tional validating parsers.

1. Introduction

The Extensible Markup Language (XML) format deliv-
ers key advantages in interoperability and is widely adopted
as a standard for exchanging structured information by Web
services. Web services technologies and applications have
built on the success of XML by providing standardized
delivery of structurally and semantically rich content over
the Web, as defined by the Simple Object Access Proto-
col (SOAP) and Web Service Definition Language (WSDL)
W3C standards. However, the interoperability of XML Web
services often comes at the price of reduced efficiency of
message composition, transfer, and parsing compared to
simple binary protocols. Several studies have evaluated
the performance of SOAP and concluded that SOAP and
XML incur a substantial performance penalty compared to

binary protocols [4, 9, 10]. Parsing and validation of XML
against a schema is expensive [12, 19], as well as the cost
of deserialization into usable in-memory objects for appli-
cations [6,10].

Several efforts have been made to address the parsing
and validation performance through the use of grammar-
based parser generation by leveraging XML schema lan-
guages such as DTD [23], XML schema [14], and Re-
lax NG [8] at compile time. Compiled schema-specific
parsers [7, 11, 15, 16, 20–22, 24, 25] have shown significant
performance improvement. Schema-specific parsers encode
parsing states and validation rules at compile time by ex-
ploiting schema structures and validation rules to increase
processing efficiency at runtime.

However, each generated schema-specific parser must be
appropriate to the operating system, compiler, supportingli-
braries, and hardware on which applications will be run on.
The parser must be regenerated and deployed when an XML
schema is updated. This is a significant challenge for devel-
oping extensible Web services. A Web service is usually a
long term agreement that allows consumers to interact with
a web service. To address schema updates, service design-
ers typically add new elements to their schema by changing
the source code, adding the required business logic and re-
building the service. However, this approach only works for
simple services. Consider for example a large business ap-
plication requires customizations to fit specific industries,
countries, and customers. Exposing such business applica-
tions as web services is difficult because they have to be
able to be customized over time and these customizations
must work for all consumers, even consumers that have
made changes to the application. This issue requires that
the services have to be designed to be extensible, i.e. Ex-
tensible Web services that typically require extensible XML
schemas.

Our previous works [26] presents a table-driven XML
(TDX) parsing and validation for high-performance Web
services. Our TDX technique utilizes a compact tabu-
lar representation of schemas and a push-down automa-
ton (PDA) for a single-pass parsing and validation with-



out backtracking. To avoid backtracking on XML ele-
ments and attributes defined by XML schema constructs
such as unordered sequence of elements (xs:all) and at-
tributes (xs:attribute), in our later work [25], we ex-
tend Backus Naur Form (BNF) with support ofpermuta-
tion phrase grammar representation of a schema (thus we
call a TDX parser with permutation phrase support a pTDX
parser). The permutation phrase grammar is a compact rep-
resentation of common XML element and attribute permu-
tations that have specific occurrence constraints. The per-
mutation phrase grammar requires a specialized recognizer,
which is implemented by a two-stack push-down automa-
ton. In pTDX parser the parsing engine is implemented as
a generic table-driven driver that is independent of XML
schema at runtime. However, the DFA-based scanner is
built from a schema-directed Flex [18] description1. The
Flex description of the scanner is fed to Flex to generate
DFA-based scanner source code in C. As a result, rebuild-
ing of the pTDX parser is a requirement for schema updates.
We refer this pTDX parser to Flex-based pTDX parser, or
pTDX-fle in short thereafter.

This paper presents an adaptive XML parsing and
validating technique that can be used to develop high-
performance extensible Web services. Unlike pTDX-flex
parser separating a scanner and a parsing engine, this ap-
proach implements a table-driven engine that integrates
scanning, parsing and validation. This is based on the obser-
vation that the parsing table not only drives the parsing, but
also can it direct scanning. We call this approach a table-
directed pTDX parser, or pTDX-table in short.

The remainder of this paper is organized as follows. We
first give a brief description of an adaptive pTDX parser in
Section 2. In Section 3, we introduce mapping rules from
XML schema components to augmented LL(1) grammar.
Construction of modular tables is described in Section 4.
Section 5 gives table-driven 2-stack PDA based engine that
integrates scanning, parsing and validation. Performance
evaluation is given in section 6 and related work is discussed
in Section 7. Conclusions are drawn in Section 8.

2. Overview of Adaptive pTDX-based Parser

The architecture of a pTDX-based Web service with
swappable modules is shown in Figure 1. The front-end
consists of a generic parsing engine, and several modules
containing an LL(1) parsing table, a token table, an LL(1)
production rule table, tag name table and an action table.

The generic engine, implemented by a push-down au-
tomaton (PDA), scans the XML messages for tags and
character data (CDATA) , convert each recognized tag into
a token, and performs well-formedness checking and va-

1Flex is a frequently used automatic generator tool by compiler devel-
opers for high-performance scanners.

Figure 1. Architecture of a pTDX-based exten-
sible Web service with swappable modules.

lidity of the XML content by consulting the parsing ta-
ble combined with the production rules with semantic ac-
tions. Well-formedness and most structural and some XML
content types imposed by XML schema are automatically
incorporated into the parsing table and production rules,
thus they are verified automatically by the parsing en-
gine. Some schema built-in types or derived types from
<xs:restriction> can not be easily incorporated in to
grammar productions. Such types are checked by semantic
actions associated with grammar productions. A semantic
action function is invoked by the engine to validate if the
content of an XML element conforms its constraints. The
engine also invokes functions at the back-end through the
application action table, which contains function pointers
(callbacks) to the application logic for performing applica-
tion tasks. Both type-checking and application actions are
encoded as indices to the entries in the action tables. By
using indices, the semantic actions associated with gram-
mar productions do not need to be pre-compiled. This en-
sures that the modular tables are swappable. In addition, the
scanner and parsing engine are implemented as table-driven
generic scanner and parser, thus are independent of XML
schemas or WSDL descriptions. Therefore, this approach
offers a flexible and adaptive mechanism to deal with XML
schema updates. When an XML schema updates, the modu-
lar tables can be regenerated and populated with no require-
ment of recompilation of the scanner and the engine.

The back-end that consists of an application-specific ac-
tion table and a shared parameter table serves for applica-
tion service logic. Application logic tasks can be achieved
by well-defined APIs that are indexed and stored in an
application-specific action table. These application func-
tions are also triggered by semantic actions associated with
production rules. Like type-checking function, the use of
index tokens to refer application functions ensures the in-
dependence of the scanner and the parsing engine on the
application logic in the back-end. The parameter data ta-
ble temporarily holds primitive data passed from the engine
that can be directly used by application functions without



requirement of deserialization (although the TDX-based ap-
proach is capable of deserialization).

3. Mapping XML Schema to Augmented LL(1)
Grammar

In this section we briefly describe the mapping rules
that define the translations from XML schema compo-
nents to LL(1) grammar productions (See our previous pa-
pers [24–26]). The mapping preserves the structural and
semantic constraints imposed by XML schemas. Many
types of validation constraints are incorporated in the re-
sulting grammar, for example, thexs:sequence order
constraint.

We useX to represent any arbitrary Numbers of schema
components or particles. The symbolN denotes a non-
terminal. The termN{m..n}, where2 ≤ m ≤ n, repre-
sents a string ofN ’s with at leastm but no more thann
number of occurrences ofN ’s. This is used to represent
the extended Context Free Grammar (CFG) for productions
generated for occurrence constraints and some facets such
asxs:length,xs:minLength, andxs:maxLength.

The mapping operatorΓ[[X ]]N takes a schema compo-
nent and a designated non-terminalN , and returns a set of
LL(1) grammar productions and/or the mapping operator
with reduced schema component. A set of grammar pro-
ductions are generated from the root element by applying
the mapping rules until nor more schema component is left
in the mapping operator. The symbolsN ′, N ′′, andNi rep-
resent new nonterminals derived from nonterminalN .

Table 1 lists part of the mapping rules that translate com-
monly used schema component to augmented LL(1) gram-
mar productions. The first rule maps the most commonly
basic format ofxs:element. The starting tag and clos-
ing tag are represented as tokens. Note that this mapping
rule does not apply to global elements. We notice that top-
level elements and attributes must be mapped using their
global name, such that the non-terminal used in the gram-
mar productions are available at global scope in the gram-
mar. That is, for the global elements, the following mapping
rules have the highest priority.

Γ[[<element name=‘E’X/>]]N = Γ[[<element name=‘E’X/>]]E
Γ[[<attribute name=‘A’X/>]]N = Γ[[<attribute name=‘A’X/>]]A

Similarly, xs:complexType andxs:simpleType
must also be mapped using their names (see rules (2-3)).
Such mapping rules have the highest priority.

3.1. Mapping Occurrence Constraints

Occurrence constraints xs:minOccurs and
xs:maxOccurs determine the minimum and maxi-
mum occurrences of an element or other components.

It is straight forward to map an optional occur-
rence (minOccurs=‘0’) to epsilon production,
i.e. empty production, and to map unbounded occurrences
(maxOccurs=‘unbounded’) to right recursive pro-
ductions. To reduce the size of the generated grammar,
we extended CFG to support arbitrary occurrence between
m and n, where where2 ≤ m ≤ n. Rule (6) defines
such mapping for occurrence constraints to preserve that
the component<x/> can appearm to n times. Note
that mapping rules for schema facetsxs:minLength
and xs:maxLength are defined in a similar way.
The occurrence mapping rules significantly reduce the
number of productions. For example, an element with
xs:minOccurs of value 10 andxs:maxOccurs value
of 1100 may require a thousand LL(1) production rules
without using occurrence production.

3.2. Mapping xs:all and xs:attribute to
Permutation Phrase Rules

XML schema xs:all component specifies that its
child elements can appear in any order and that each
child element can occur zero or one time. Similarly,
xs:complexType may define an element that contains
a set of attributes specified byxs:attribute. Attributes
of an element can occur in any order. One way to map
these unordered elements or attributes is to sum up all pos-
sible permutations. However, this may cause the grammar
size to combinatorially increase. For example, an element
with five attributes, not uncommon in the Web services,
would generate120 different productions in the CFG. Fur-
thermore, such grammar violates the LL(1) properties. Ap-
plying left-factoring to these productions for elim-
inating ambiguity introduces more productions. A permu-
tation phrase is a grammatical phrase that specifies a syn-
tactic construct as any sequence of constituent elements in
which each element occurs exactly once and the order is
irrelevant [3, 5]. Thus we extended the LL(1) grammar to
support permutation phrase grammar [25]. Rules (7-8) de-
fines permutation phrase mappings. We use〈〈a ‖ b ‖ c〉〉 to
represent a permutation phrase.

3.3. Preserving the LL(1) Properties

It is critical to preserve the LL(1) property for construct-
ing the LL(1) parsing table. The mapping rules map ele-
ment tag names and attribute tag names to unique tokens
and makes use of namespace bonded names as nontermi-
nals, and thus ensuring most mapping rules including per-
mutation phrase mapping rules to preserve LL(1) proper-
ties.

However, rules (10-11) mapxs:choice and
xs:union to the productions with the same nonter-
minal at right hand side. These mapping rules may generate
grammar productions that violate LL(1) property for some



Rule# Translation
1 Γ[[<element name=‘E’ Type=‘T’> X </element>]]N = {N → bE T̃ eE}
2 Γ[[<complexType name=‘C’> X </complexType>]]N = Γ[[<complexType name=‘C’> X </complexType>]]C
3 Γ[[<simpleType name=‘S’> X </simpleType>]]N = Γ[[<simpleType name=‘S’> X </simpleType>]]S
4 Γ[[<X minOccurs=‘0’/>]]N = {N → ǫ} ∪ Γ[[<X />]]N
5 Γ[[<X maxOccurs=‘unbounded’/>]]N = {N → N ′N, N → ǫ} ∪

S

Γ[[<X />]]N ′

6 Γ[[<X minOccurs=‘m’ maxOccurs=‘n’/>]]N = {N → [N ′]{m..n} ∪ Γ[[<X />]]N ′

7 Γ[[<all> X1X2 . . . Xn </all>]]N = {N → 〈〈N1 ‖ N2 ‖ · · · ‖ Nn〉〉} ∪
S

n

i=1
Γ[[Xi]]Ni

8 Γ[[<attribute name=‘A1 ’ X/> · · · <attribute name=‘An ’X/>]]N = {N → 〈〈N1 ‖ · · · ‖ Nn〉〉}∪
S

n

i=1
Γ[[<attribute name=‘Ai’ X/>]]Ni

9 Γ[[<sequence> X1X2 . . . Xn </sequence>]]N = {N → N1N2 . . . Nn} ∪
S

n

i=1
Γ[[Ni]]Ni

10 Γ[[<choice> X1X2 . . . Xn </choice>]]N =
S

n

i=1
(N → Ni) ∪

S

n

i=1
Γ[[Xi]]Ni

11 Γ[[<union memberTypes=‘T1 Tn . . . Tn’ X/>]]N =
S

n

i=1
(N → Ni) ∪ Γ[[X]]N

12 Γ[[<list itemType=‘TX/>]]N = {N → TN ′, N ′ → TN ′, N ′ → ǫ} ∪ Γ[[X]]N

Table 1. Examples rules mapping Schema component to augmented LL(1) grammar productions.

cases (ref. [26] for examples). Such violation can be
eliminated by applyingleft-factoring [1]. We perform
left-factoringfor the generated grammar to ensure the LL(1)
properties preserved.

4. Constructing Modular Tables

Modular tables play a key role in Table-Driven XML
parsing. Modularity offers a flexible and adaptive mecha-
nism for dealing with schema updates. In this section, we
describes construction of these modular tables from a set of
schemas or WSDL descriptions.

4.1. Token Table

Not only are tokenization of string once and match-
ing on tokens more efficient than repeatedly comparing
strings, but also tokenization simplifies process of pars-
ing table and grammar production rules. Tokens are de-
fined by schema element tag names, attribute tag names,
schema built-in types such asxs:boolean and some
facets such asxs:enumeration. Element tag names
are further classified as starting element tag and closing
element tag. Through this paper, we usebNAME and
eNAME to denote the starting element tag<NAME> and
closing tag</NAME> respectively. An attribute tag name
is represented byaNAME. Similarly, an enumeration value
value=‘V is represented bycV. Namespace bindings are
supported by internal normalization of the token stream to
simplify the construction of LL(1) parse table and avoid
naming conflicts. A full tag name is a pair of<ns,name>.
Namespace qualified elements and attributes are translated
into normalized tokens according to a namespace mapping
table. Thus, identical tag names defined under two different
namespace domains are in fact separate tokens.

4.2. Action Table

Some schema built-in types or derived types from
<xs:restriction> can not be easily incorporated in
to grammar productions. Such types are checked by seman-
tic actions associated with grammar productions. Schema
built-in types are implemented as libraries. Derived types

from<xs:restriction> are constructed from schemas
as routines for invocation by the engine to perform ele-
ments’ or attributes’ content type checking.

4.3. Parsing Table

The parsing table is a two dimensional arrayM [A, a],
whereA is a nonterminal, anda is a terminal. Each en-
try of the table is either an index that refers to a produc-
tion rule or an token indicating an error entry2. The parsing
table are constructed through the use of FIRST and FOL-
LOW sets [1]. The differences between our augmented
LL(1) grammar and the LL(1) grammar in [1] exist in that
ours supports occurrence production rules and permutation
phrase production rules. The former imposes no affect to
calculation of FIRST and FOLLOW sets while the latter
does. All of the constituent elements should be treated as
the first element when constructing the FIRST and FOL-
LOW sets because of the unordered property of the permu-
tation phrase production. Thus, the permutation grammar
composition symbol is commutative and associative and the
FIRST and FOLLOW sets are computed as union of all el-
ements (ref. [25]).

5. Constructing Generic Engine

The engine behaves in two modes:scanning mode and
parsiong mode. In scanning mode, the engine works as a
scanner to scan tags and converts recognized tags into to-
kens. In paring mode, the engine consumes tokens and per-
forms parsing and validation. When the top of the stack is
a nonterminal and there is no current token to parse, the en-
gine enters scanning mode. Once a tag name or CDATA is
recognized, the engine converts the recognized tag name or
CDATA into a token, and enters into parsing mode.

5.1. Scanning Mode

In scanning mode, the engine scans the input string each
time to match a specific tag name. Tag names are classified

2We say the parsing table entry is either a production or an error entry
to simplify the description thereafter.



asstarting element name, closing element name, attribute
name, andchracter data. Once a match is found, the engine
converts the tag into a token, and enters into parsing mode.

The parsing table provides information of the specific tag
name. From the point view of scanning, the parsing table
restricts the possible strings that can be next input string.
Each row of the parsing table is indexed by a nonterminal
and each column is indexed by a terminal, i.e. a token rep-
resenting a tag name. To this end, the expected tag name
must be among the ones that the nonterminal can generate,
and there is exactly one tag name is expected to meet. The
engine checks the entry indexed by the nonterminal and the
token. If it is a production entry, the engine picks up the to-
ken’s corresponding tag name and starts to scan. Otherwise,
the engine try next token. If no matck is found for all the
tokens that correspond to a production entry with the non-
terminal, its behavior depends on the type of nonterminal.
If it is a regular nonterminal, it indicates an error. If it isa
permutation nonterminal, put the nonterminal into auxiliary
stack. Typically each row contains few production entries
unless for a grammar that consisting large portion of per-
mutation phrases.

• Scanning Starting Element

XML namespaces and attrtibute impose a significant
challenge for scanning starting element. A starting ele-
ment tag, either qualified or not, can not be determined
until all the namespaces have been resolved, because
a namespace or default name space may be redclared.
Unfortunately the namesapces can not be resolved un-
til the starting element tag is closed (the character‘>’
is seen). The strategy is to scan the entire starting el-
ement until it is closed. During the scanning, the en-
gine resolves the namespaces, moves all the attributes
into another buffer, then converts the starting element
to token and enters parsing mode. Because namspaces
may be redeclared in a starting element, thus default
namespace (if applicable) and namespaces are pushed
in a stack.

• Scanning Closing Element

Scanning closing element is much easier than scan-
ning starting element because there is no need to scan
namespaces. But it still needs to pop up the names-
paces that is possibly pushed by its corresponding
starting element.

• Scanning Attribute

Scanning attributes is also easy because all the names-
paces have been resolved when its corresponding start-
ing element tag name is scanned. Note that attributes
have been moved into a buffer, no longer in the input
string.

• Scanning Character Data

Scanning character data is trivial. It continues to scan
each character until the dilimiter is met. It sets the cur-
rent token to a special token that represents character
data.

5.2. Parsing Mode

In parsing mode, the engine behaves similarly as a per-
mutation parsing engine. From the point view of parsing,
the parsing table encodes a topdown parsing tree for each
instance of the XML schema from which the parsing table
is constructed. A predictive parsing engine maintains a lo-
cal stack to track the parser’s states. The nonterminal on top
of the stack and the current token determines a unique pro-
duction in the parsing table that needs to be expanded. To
be able to parse permutation phrase pgrammar, an auxiliary
stack is required to temporialy hold permutation nontermi-
nals that can not be expanded at this point. This indicates
that this permutation non terminal does not generate the cur-
rent symbol. Two flags are also needed for parsing occur-
rences constraints. The main stack is initialized with $, the
endmarker, andS, the start symbol on top. The current sym-
bol X , which is the symbol on top of the main stack, and
c, the current token generated in the scanning mode, deter-
mine the parsing action.

• X is a terminal. If X = c 6= $, the parsing engine
popsX from the main stack and read the next input
symbol. If X = $, the parser halts and announces
success. Otherwise the engine announces an error.

• X is an occurrence nonterminal. The engine checks
flagFmax to see if it exceeds the maximum number of
occurrences. It decreases the values of the flagsFmin

andFmax by one if not; and it puts the right side hand
of the production with the occurrence nonterminal in
the parsing table with the nonterminal remaining in the
stack. Otherwise it declares an error.

• X is a permutation nonterminal. By checking flag
Fmax, the engine verifies if the minimum occurrence
constraint is met. The engine moves all symbols of
the auxiliary stack (if not empty) into the main stack
and consults the entryM [X, c] of the parsing tableM .
The engine replaces the nonterminal with the right side
hand of the production with the left most symbol on
top of the stack. If it is an error entry, the symbol is
moved into the auxiliary stack from the main stack.

• X is a regular nonterminal. The engine also first
checks minimum number of occurrences requirement
is met. It then checks status of the auxiliary stack.The
engine consults the entryM [X, c] of the parsing table



Figure 2. Performance comparison of validat-
ing and non-validating parsers

M , and replacesX by the right hand side of the pro-
duction, with the left most symbol on top of the stack.
If M [X, c] is an error entry, it declares an error. If aux-
iliary stack is not empty, the engine checks to see if
all symbols in the auxiliary stack can generate empty
string. An error is announced when a symbol that can-
not generate empty string is present. The engine pops
all symbols that can generate empty string.

6. Performance Evaluation

We use the same bench mark and test cases as in [25] to
measure the performance. File system I/O or network over-
head is not measured. Free-ordered elements are placed in
a random way. Multiple instances are parsed from separate
buffers to avoid any effect possibly caused by high cache hit
rates. Time is measured as Wall Clock real time elapsed us-
ing system callgettimeofday(). All tests reported here were
conducted on a Dell Optiplex GX620 with a 3.0 GHz Intel
Pentium D processor, and 2 GB of main memory, running
Linux 2.6.20-1.2320. All parsers reported here were com-
piled with GCC version 4.1.1 option -O2.

We firstly compared our table-directed adaptive pTDX
(pTDX-table) with the Flex-based pTDX (pTDX-flex).
We compared two widely used runtime-based parsers,
Xerces [2] and expat [17]. We chose Xerces with version
of 2.7.0 and Expat with version of 2.0.1 for Linux. We
also compared two compile-based parsers, DFA [21] and
gSOAP [20] with version of 2.7.3. No application-specific
events were triggered in the measurements although TDX
offers the capability to trigger events.

Test cases and the measured results are listed in Table
2. From the Figure 2, we can see that the throughput of
pTDX-table ranges from 22 MB/Sec to 38 MB/Sec for var-
ious message sizes and different numbers of elements in
xs:all or xs:attribute. pTDX-table demonstrates
throughput of 27MB/Sec on average of various number fo
xs:all elements and instance sizes.

Xerces is one of the most widely used toolkits for de-

Figure 3. Effect of number of elements in
xs:all of pTDX Parser.

veloping runtime XML parsing and validation by develop-
ers. Compared to runtime parsers, pTDX-table is on aver-
age 5.4x faster than Xerces parser with validation in SAX
mode.

Expat is a non-validating streaming XML parser. It is
considered one of the fastest steaming XML parser. It
was used without XML namespace support to speed it up.
The performance of our pTDX-table with validation is very
comparable to non-validating Expat.

gSOAP is a widely used Web services development
toolkit for developing high-performance Web services in
C/C++. It generates very fast codes for XML parsing, val-
idation and deserialization. pTDX is still 2.7x faster than
gSOAP though gSOAP’s strength is deserialization.

Compared to pTDX-flex, pTDX-table demontrates a
20% performance drop. This is because pTDX-table uses
a table-directed scanner that interpretively scans the input
messages. pTDX-flex uses a compiled DFA-based scanner
constructed by Flex description. pTDX-table balances the
need for adaptive mechanism against performance.

DFA-based parser is the fatest parser measured here. It
uses the Flex-based description to constructed a DFA-based
XML parser. Like Expat it performs well-formedness check
without validation. Like pTDX-flex, It is a compile time
DFA-based non-validating parser.

The results in Figure 3 demonstrate that the number of
xs:all elements does not play a signicant performance
penalty for all the parsers tested. The number of the ele-
ments inxs:all makes not much difference to throughput.
The number of elements inxs:all varies from 2 to 32,
while the throughput only varies between 28 MB/Sec and
36 MB/Sec for pTDX-table validating parser. This indicates
that pTDX-table parser has good scalability to the number
of elements inxs:all.

7. Related Work

There have been many efforts aimed to improve per-
formance of XML parsing and validation in the past re-
cent years. A promising technique is schema-specific XML



Test Schema Schema No. of Elts. Instance Instance Throughput (MB/Sec)
Case Filename Size (Bytes) <xs:all> Filename Size (Bytes) Validating Parsers Non-Validating

pTDX-flex pTDX-table gSOAP Xerces DFA Expat
G21 2k g.xsd 4021 21 g.xml 2341 41 29 11 5 34 23
A50 64k a.xsd 3155 50 a 64k.xml 68060 33 27 10 3 38 26
A50 3k a.xsd 3155 50 a 3k 3016 31 25 8 3 38 21
B5 0.2k b.xsd 814 5 b.xml 291 24 22 3 3 26 13
B5 8k b.xsd 814 5 b 8k.xml 8232 40 38 19 7 44 37
A50 16k a.xsd 4021 50 a50 16k 17156 32 25 11 10 39 26
A2 0.3k a2.xsd 569 2 a2 0.3k 341 28 28 3 2 31 12
A4 0.4k a4.xsd 668 4 a4 0.4k 452 32 28 4 2 35 14
A8 0.6k a8.xsd 881 8 a8 0.6k 678 34 32 5 4 38 16
A16 1k a16.xsd 1314 16 a16 1k 1124 35 31 6 2 39 18
A32 2k a32.xsd 2190 32 a32 2k 2036 36 30 8 3 39 20
A32 4k a32.xsd 2190 32 a32 4k 3886 34 27 10 3 42 22
A32 8k a32.xsd 2190 32 a32 8k 7584 35 28 10 3 42 25
A32 16k a32.xsd 2190 32 a32 16k 16826 35 28 17 2 38 25
A32 32k a32.xsd 2190 32 a32 32k 33462 36 28 11 4 42 26

Table 2. Test Cases and measurements.

parsing [7, 11, 13, 15, 16, 19–22, 24, 26]. Schema-specific
XML parsing achieves performance gains by exploiting
schema information to compose a parser at compile time
and utilizing the parsing states at runtime to verify schema
validation constraints.

Our previous work on the gSOAP toolkit [20] is the ear-
liest work on a schema-specific LL(1) recursive descent
parser for XML with namespace support and validation. To
our knowledge, this was also the first published work in
the literature to suggest an integrated approach to schema-
specific parsing by collapsing scanning, parsing, validation,
and deserialization into one phase. However, gSOAP imple-
ments a recursive descent the parser that involves function
calling overhead and blocking property.

In [21] Van Engelen presents a method that integrates
parsing and validation into a single stage by using a two-
level schema in which a lower-level Flex scanner drives a
DFA validation. The DFA is directly constructed from a
schema based on a set of mapping rules. However, this
approach can only process a non-cyclic subset of XML
schema due the limitations of regular languages described
by DFAs. Furthermore, this approach is not applicable in
practice for permutation phrase that consists of even not a
large number of elements due to the fact that the number of
DFA states increases exponentially.

Chiu et al. [7] also suggest an approach to merge all
aspects of low-level parsing and validation by extending
DFAs to nondeterministic generalized automata. They also
provide a technique for translating these into deterministic
generalized automata. However, translating from an NFA
to a DFA may blow up the number of states, thus limiting
these parsers to small occurrence constraints. Furthermore,
their approach does not support namespaces, which is an
essential requirement for SOAP compliance.

Cardinality-constraint automata (CCA) [16] offers an ef-
ficient schema-aware XML parsing technique by extending
deterministic finite automata with cardinality constraints on
state transitions. These automata can easily take care of oc-

currences constraints imposed by schema. Unfortunately,
CCA does not provide mechanism for well-formedness
checking.

XML Screamer [11] presents an efficient parser gener-
ator that translates XML schema into a parser either in C
or Java code. Similar to gSOAP and the work by Chiu
et al., XML screamer also integrates deserialization with
scanning, parsing, and validation. It demonstrates that high-
performance can be obtained by careful design of APIs. The
tool uses recursive descent with backtracking, and covers a
large schema space. As with all recursive descent parsers,
XML Screamer is a blocking parser. More recent work that
builds on XML Screamer is iScreamer [13]. iScreamer is
a schema-directed interpretive XML parser and achieves
high-performance gains by using a carefully tuned set of
special-purpose bytecodes. iScreamer, does not support full
schema features. Also, its reliance on specialized bytecodes
may hinder its acceptance.

TDX [24, 26] provides an integrated approach that
combines well-formedness checking, content-type valida-
tion and application-specific event by pre-encoding parsing
states in a tabular form at compile time and by utilizing an
efficient push-down automaton at runtime. However, TDX
relies on exponential enumerations of permutation phrases
and is therefore not space optimal. pTDX-flex [25] pro-
poses a TDX-based approach that achieves both time and
memory space efficientcy by extending extend Backus Naur
Form (BNF) with support ofpermutation phrase gram-
mar representation of a schema. The permutation phrase
grammar is a compact representation of common XML el-
ement and attribute permutations that have specific occur-
rence constraints. The permutation phrase grammar re-
quires a specialized recognizer, which is implemented by a
two-stack push-down automaton. However, this Flex-based
TDX parser lacks capability of addresing schema updates.



8. Conclusion

In this paper we presented an adaptive table-driven XML
parsing and validation technique that can be used to develop
extensible high-performance Web services. The adaptive
TDX encodes XML parsing states in compact tabular forms
by support of permutation phrase grammar. As a result it
ensures a memory space efficiency. This adaptive approach
uses interpretive scanning at run time by leveraging these
tabular forms to improve scanning performance.
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