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Abstract

Object-level coherence in distributed applications and
systems has been studied extensively. Object coherence in
platform-specific and tightly-coupled systems is achieved
with binary serialization protocols to ensure data struc-
tures and object graphs are safely transmitted, manipu-
lated, and stored. On the opposite side of the spectrum
are platform-neutral Web services that embrace XML as
a serialization protocol for building loosely coupled sys-
tems. The advantages of XML to connect heterogeneous sys-
tems are plenty, but rendering programming-language spe-
cific data structures and object graphs in text form incurs
a performance hit and presents challenges for systems that
require object coherence. Achieving the latter goal poses
difficulties by a phenomenon that is sometimes referred to
as the “impedance mismatch” between programming lan-
guage data types and XML schema types. This paper exam-
ines the problem, debunks the O/X-mismatch controversy,
and presents a mix of static/dynamic algorithms for accu-
rate XML serialization. Experimental results show that the
implementation in C/C++ is efficient and competitive to bi-
nary protocols. Application of the approach to other pro-
gramming languages, such as Java, is also discussed.

1. Introduction

XML Web services technologies have proven to be ex-
cellent vehicles for bridging the platform and programming
language gap in heterogeneous distributed systems. The ex-
pressiveness and simplicity of XML paired with SOAP Web
services interoperability characteristics are highly appeal-
ing compared to binary protocols. However, object coher-
ence in platform-specific and tightly-coupled systems has
been achieved for years with binary serialization protocols.
By contrast, Web services are loosely coupled and are not
specifically designed to meet these strong requirements.
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Yet, SOAP RPC [20] provides an object and data serial-
ization format that clearly suggests a tight coupling between
programming language types and XML constructs such
as primitive types, arrays, structs, and multi-references.
The SOAP RPC standard appears to be particularly well-
suited for RPC-based messaging by mapping application
data onto SOAP RPC-encoded XML. With the move to doc-
ument/literal Web services and XML schema as a popular
serialization meta-format, accurate programming language
type mappings have become even more important, yet more
difficult to achieve because there is no standard mapping be-
tween XML schema and program language types.

Several authors [8, 10] refer to the mapping problem
as the Object/XML (O/X) impedance mismatch, a term
that bears some resemblance with the heavily-studied Ob-
ject/Relational (O/R) mapping problem, thereby relating
the SOAP/XML interoperability issues to the imperfec-
tion of the O/X mapping. However, a major part of the
O/X-mismatch can be attributed to the limitations of the
widely-used JAX-RPC implementation of SOAP in Java,
see Loughran et al. [8]. They also argue that the O/X-
mismatch problem is compounded by the misconception
among many developers that JAX-RPC is SOAP-RPC.

This paper debunks the O/X-mismatch controversy, ex-
amines the coherence problem, and presents a mix of
static/dynamic algorithms for accurate XML serializa-
tion within the limits of XML schema constraints. In Sec-
tion 2 we argue that trying to compare XML schema to pro-
gramming language type systems is counter productive.
Section 3 states the requirements for object-level coher-
ence and presents a brief overview of systems that achieve
coherence using binary protocols. We discuss the de-
sign and solution space for object coherence in XML ser-
vices using specific examples from Apache Axis (Java) [1]
and gSOAP (C/C++) [17]. The mapping problem of pro-
gramming language types to XML schema is discussed
in Section 4 and specifically applied to C/C++ and Java.
Our XML serialization approach for object-level coher-
ence is introduced in Section 5 with a presentation of the al-
gorithms. Section 6 gives performance results to verify the
efficiency of the implementation on various platforms. Fi-
nally, Section 7 summarizes our findings.



2. The O/X Impedance Mismatch Revisited

Any context-free language has an infinite number of
grammars to describe the syntactically valid strings. Like-
wise, XML content can be described and constrained in
many different ways [12], e.g. using XML schema, Relax
NG, DTD, and LL(1) grammars [9] to name just a few. In
fact, many different XML schemas can be constructed to
describe the structure of a set of XML documents. In other
words, we believe it is counter productive to compare a spe-
cific schema to a programming language type system.

The primary purpose of XML schema is to provide a
meta language for (manually) defining valid XML content,
where certain schema components are clearly intended to
make this process simpler with convenient constructs to re-
lieve the schema author from heavy text editing and by pro-
viding modular components for elements, types, and group-
ings of these. Any XML schema with element references,
groups, and substitutions can be translated into an equiva-
lent schema (or schema-like language) without these, while
maintaining the validity constraints. Once we obtain a de-
sugared schema by translating the unnecessary extras to
simpler constructs, the mapping is much clearer. Therefore,
we reject the notion that the O/X mapping is intractable.
However, we agree that the mapping is a challenge for
each unique programming language, especially for serial-
izing object graphs in SOAP/XML.

We summarize and comment on the arguments com-
monly stated in the context of the alleged O/X-mismatch:

o The inability to support derivation by restriction, such
as restricted value ranges and patterns. However, re-
stricted types basically stand on their own, so the
derivation hierarchy is not relevant at runtime when se-
rializing objects. Indeed, support for restriction is not
fundamentally more difficult than defining restricted
types in languages that support subtyping, e.g. sub-
range types in Pascal. Note that languages that do not
support subtyping require other mechanisms, such as
the program annotations with gSOAP [17] for C/C++.

e Not being able to map XML names to identifiers. Punc-
tuation and Unicode characters in XML names can
be encoded with simple conventions such as with hex
_xABCD__ codes in identifier names, as suggested in
the SOAP specifications. Many modern programming
languages also support Unicode identifier names.

o No mechanism for implementing XML namespaces.
We agree that Java packages and C++ namespaces
cannot adequately simulate the XML namespace con-
cept, because XML namespace resolution is not lim-
ited to types, but also determines the namespaces of
local elements and attributes. Schema import, include,
and redefine constructs also do not translate to package
imports. We believe that the incorporation of canon-

ical namespace prefixes in identifier names, such as
struct/class members with gSOAP [17], is practical
and effective to resolve namespaces. Annotations sug-
gested in [8] are not sufficient, because name clashes
cannot be resolved.

o Unsupported XML schema components. As we men-
tioned earlier, many schema components that are for-
eign to programming language types can be elimi-
nated and translated to simpler structures. De-sugaring
a schema yields an equivalent but simpler schema.

o Unsupported types. All built-in XSD types can be
mapped to basic programming language types or to
specialized types introduced to represent XSD types.

e Serializing a graph of objects. SOAP-RPC encod-
ing provides multi-referencing to serialize (cyclic) ob-
ject/data graphs. Most SOAP toolkits support this fea-
ture, but not all of the toolkits necessarily follow the
SOAP specification that limits the use of multi-ref for
data with multiple references only. Document/literal
poses some further problems, see Section 3.

This section presented mostly a schema-centric view of
Web services layered on top of a programming language
and its type system, where we reflected on the primary con-
cerns for finding suitable programming language types for
XML schema components. However, the latter issue also
presents a point of view from a language perspective, where
the problem at hand has close similarities to the object-
coherence problem.

3. Object-Level Coherence Requirements

Large-scale distributed systems require strong ob-
ject coherence guarantees [2] to ensure that objects moved,
cached, and copied across a set of nodes in a distributed sys-
tem preserve their structure and state. Coherence is a ba-
sic requirement in tightly-coupled distributed systems, such
as Java RMI [15], CORBA [13], and XDR-based RPC [6].
In these systems the consistency of the distributed ob-
jects is critical and leads to fragility of the system when
kept unchecked, e.g. Java class loaders dynamically ver-
ify imported classes.

Similarly, SOAP/XML processors share schemas to ver-
ify XML content, but must also be aware of the object refer-
encing mechanism used when (de)serializing object graphs.
Accurately representing object graphs in XML is critical
to achieve structural coherence. We consider resolutions to
the following issues critical for achieving object-level co-
herence in XML Web services:

e SOAP 1.1 RPC encoded multi-ref accessors are placed
at the end of a message, so that all references are
forward pointing. Object copying or pointer back-
patching must be used by the deserializer for each for-



Shape

<complexType name="X">
<sequence>
<element name="y"
type="tns:Y"/>

<complexType name="X">
<sequence> ... </sequence>

<attribute name="ref"
type="REF"/>

<complexType name="X">
<sequence>...</sequence>
<attribute name="id"

Schema <element name="z" </complexType> type="ID"/>
<complexType name="Y">
type="tns:z2"/> <attribute name="ref"
<sequence>...</sequence>
RN . ; type="REF"/>
<attribute name="id"
</sequence> type="TD"/> </complexType>
< lexT >
/complexType </complexType>
<x> <x ref="123">...</x> <x ref="456">...</x>
<y>...</y> . e
XML <z>...</z> <x ref="123">...</x> <x ref="456">...</x>
</x> <y id="123">...</y> <x id="456">...</x>

Figure 1: Three object referencing graph examples.

ward pointing edge to complete the edge references
in the partially instantiated object graph. The SOAP
1.2 RPC encoding format is more natural, and allows
both forward and back edges, but no requirements are
defined to avoid excessive object copying and back-
patching. Even by vigorously following the specifica-
tions and best practices, many serialization methods
are too lossy to ensure object-level coherence. For ex-
ample, every object in the graph is serialized with id-
href by Apache Axis [1] using an inefficient non-
scalable run-time algorithm [5] rather than the true
multi-referenced objects, making it difficult to achieve
object-level coherence.

For SOAP document/literal encoding the most critical
problem is the absence of a default referencing mecha-
nism in XML. The recent publication of XML ID [22]
helps and we suggest using xml:id and ref simi-
lar to SOAP 1.2 RPC encoding instead of explicitly
adding xs:ID and xs:REF referencing to all com-
ponents in the XML schemas, see below for more de-
tails. Also note that a means to classify pointers as ref-
erence (non-nil pointer), unique (can be nil and is the
single reference to an object), or full (to shared and
aliased objects) as in DCE IDL is only partially possi-
ble (i.e. using the xs:nillable attribute).

To prevent loss of precision, nodes must avoid serializ-
ing floats and doubles as XSD types. We suggest using
IEEE 754 floats encoded in hexadecimal or base64 by
defining a simpleType restriction of xs:hexBinary
or xs:base64Binary, respectively, see also [16].
In [3], the authors show that the conversion of float-
ing point data to and from an XML respresentation
can account for 90% of the end-to-end communication
time. We can address this bottleneck by using hexadec-
imal or base64-encoded IEEE 754 floating point val-
ues. Encoding and decoding must be performed by a
pre-processor prior to XML validation.

The coherence problem for serializing object graphs in
SOAP document/literal format is compounded by the ab-
sence of a default referencing mechanism. Explicitly adding
xs:ID and xs:REF referencing attributes to all schema
components in the XML schema of a document/literal ser-
vice to implement referencing is cumbersome and intro-
duces an unnecessary layer of complexity.

To illustrate this problem, consider the three object refer-
encing graphs shown in Figure 1. Regular tree-based XML
document configurations do not require an explicit referenc-
ing mechanism, because graph nodes are simply nested in
XML. DAGs and cyclic graphs must be serialized using ex-
plicit references to preserve their logical structure, e.g. us-
ing id and ref attributes. This requires additional decla-
rations of these attributes to the schema components of the
objects when document/literal style is used.

A default identifier for multi-referencing objects in
XML, such as xm1 : id, helps to share schemas among or-
ganizations. Suppose that organization A defines a schema
for an object and organization B wants to define ob-
ject graphs where A’s object can be multi-referenced,
e.g. in a DAG. Then, A’s schema must be changed to in-
clude id and ref attributes, assuming document literal
encoding style is used. This is problematic, because af-
ter A’s schema is published it is detrimental to interoper-
ability to change schemas.

4. Mapping C/C++ and Java Types to XML

Several Web services toolkits for SOAP/XML [20]
are available for various programming languages, such as
Apache Axis[1] for Java (based on JAX-RPC) and C++,
SOAP Lite [7] for Perl, gSOAP [17] for C and C++, and
the Microsoft .NET framework [11] for C#. In this sec-
tion we specifically focus on C/C++ and Java mappings,
but the principle is generally applicable to other impera-
tive languages that are strongly typed. Even though C is



not an object oriented language, we include it in our dis-
cussion on object coherence as some C-based toolkits map
XML Schemas to structs. Many of the type mapping prob-
lems apply to these toolkits as well.

The XML Web services standard supports two XML en-
coding styles: SOAP-RPC encoding style and document lit-
eral style [20]. The choice of encoding style is fixed in the
WSDL (Web Services Definition Language) [21] interface
definition of a service. The two styles differ significantly in
the expressiveness of the serialized XML representation of
application data, and consequently the algorithms for map-
ping application data to XML are different.

4.1. RPC Encoding Style

The SOAP RPC (Remote Procedure Calling) encoding
style is a standard SOAP 1.1/1.2 [20] serialization format
that can be viewed as the greatest common denominator of
types among programming-language type systems. The en-
coding supports types that have equal counterparts in many
programming languages, which greatly simplifies interop-
erability. To this end, SOAP-RPC encoding uses a subset
of the XSD type system by limiting the choice of XML
schema components to an orthogonal subset of structures
to represent primitive types, records, and arrays. In addi-
tion, a mechanism for multi-referenced objects is available
to support the serialization of object graphs.

However, there are two problems with RPC encoding.
The first issue is that the multiref serialization with href
and id attributes violates XML schema validation con-
straints, because these attributes are not part of the schema
of a typical data structure. The second problem is that the
serialization of nil references, multi-referenced objects, and
(sparse) multi-dimensional arrays is not precisely defined,
which leads to interoperability problems. More specifically,
SOAP-RPC encoding requires the following considerations
for effective object-coherent serialization:

e Representing primitive types as built-in primitive XSD
types and vice versa;

e Mapping records (structs and classes) to
xs:complexTypes;

e Mapping arrays to SOAP arrays by ensuring support
for SOAP 1.1 partial and sparse arrays;

e Object graphs must be serialized with id and href
multi-reference encoding;

e Support for polymorphism via schema extension;

e Choosing a mechanism for XML namespace resolu-
tion to avoid type name clashes.

Table 1 shows the mapping of primitive and compound
C/C++ and Java types to XML schema types for SOAP-
RPC encoding with gSOAP and Apache Axis. Note that the
full set of XSD types is not covered. Additional XSD types,

C/C++ Type | Java Type | XML Schema Type (XSD Type)

bool boolean boolean

char byte byte

short short short

int32_t int int

int64_t long long

float float float

double double double

size_t @ unsignedLong

time_t b dateTime

char* String string

wchar_t* String string

std::string String string

enum ¢ simpleType/restriction/enumeration
typedef T class T simpleType/extension

struct T N/A complexType/complexContent/extension
class T class T complexType/complexContent/extension
typedef T class T complexType/complexContent/extension
T [nnn] T [nnn] SOAP-encoded array of T

T* N/A the schema type of T

¢ org.apache.axis.types.UnsignedLong
b java.util.Calendar
¢ org.apache.axis.enum.Enum

Table 1: Mapping C/C++ and Java types to schema types
for SOAP RPC encoding.

such as xs:decimal, can be represented by other types,
e.g. strings or subtypes (as explained in Section 1). Users
can bind XSD types, and any restricted types derived from
these, to C/C++ types using a t ypedef in gSOAP, e.g.:

typedef char *xs__decimal;

Each struct or class data member is mapped to a local
xs:element of the xs:complexType for the struct or
class. See Figure 2 for an example. SOAP-RPC encoding re-
quires arrays to be encoded as "SOAP encoded arrays” [20],
where each SOAP array is a type restriction of the generic
SOAP array schema. Another disadvantage of mapping C
arrays to XML is the absence of a true array type in C (ar-
rays in C are pointers). Arrays are either declared as fixed-
size arrays or have to be declared as a struct with a pointer
__ptr and __size field to store the runtime array size, e.g.:

struct floatarray { float *__ptr; int __size; };

Languages that support arrays as first-class citizens, such as
Java and C#, can map arrays to SOAP arrays without forc-
ing users to adopt mapping structures.

C Source Declarations XML Schema
<simpleType name="State">
<restriction base="string">
<enumeration value="OFF"/>
<enumeration value="ON"/>

* Al </restriction>
typedef char *xs__decimal; </simpleTypes
< =" LBS
enum State {OFF, ON}; complexType name="Example
<sequence>

<element name="name"
type="string"/>

<element name="value"
type="decimal"/>

<element name="state"
type="tns:State"/>

<element name="list"
type="tns:Example"
minOccurs="0"
nillable="true"/>

</sequence>
</complexType>

Figure 2: Example mapping of C types to XML schema.

struct Example

char *name;
xs__decimal value;
enum State state;
struct Example *list;




The XML schema standard adopted by the Web services
architecture requires support for XML namespaces [19].
XML namespaces bind user-defined types to one or more
type spaces, similar to C++ namespaces. However, C does
not support namespaces. Therefore, an alternative mecha-
nism is used by qualifying type names with a prefix:

enum prefix_name { ...};

struct prefix__name { ... };

class prefix_name { ...};

typedef T prefix__name;
Namespaces in XML Schemas are typically modeled as
packages in Java, which appears more natural compared to
the identifier prefixing convention. However, Java packages
and C++ namespaces cannot adequately simulate the XML
namespace concept, because XML namespace resolution is
not limited to types, but also determines the namespaces of
local elements and attributes.

4.2. Document Literal Style

Document literal style encoding is a significant depar-
ture from RPC encoding by promoting expressiveness as
opposed to the simplicity of an orthogonal type system.
On the one hand, the expressiveness allows variant records
(unions) to be serialized and arrays can be serialized in-line
instead of separately using the SOAP array encoding for-
mat. On the other hand, the absence of a standard out-of-
band mechanism for object referencing, such as the SOAP-
RPC multi-ref encoding with href and id attributes, is a
concern for object graph serialization when graphs cannot
be represented as trees. This poses additional challenges for
object-level coherent serialization guarantees.

The liberation from the SOAP-RPC encoding constraints
mainly affects the mapping of structs and classes to the
xs:complexType schema component. Without loss of
generalization, the specific mapping requirements are:

e Mapping XML attribute definitions within a
xs:complexType, where XML attributes can
be instances of primitive XSD types and instances of
xs:simpleType;

e Support for repetitions of an xs:element in a
xs:complexType sequence, i.e. elements that may
have multiple occurrences indicated by maxOccurs;

e Support the use of xs:choice and xs:any;

e Support substitution groups. These can be replaced by
collecting them in a choice-like structure.

e Supportfor xs:groupand xs:attributeGroup.
These macro structures have no effect on the map-
ping since they can be expanded within the schema
and only serve as syntactic conveniences;

e Support for top-level schema element and attribute def-
initions and associated references. These references
are immediately resolved at compile time by gSOAP,

Member m Change XML Schema Type

T m; @ Tm, attribute/@type="T"

std::vector(T') m; | none element/@maxOccurs="unbounded"

element/Q@type="T"

T*m; (points to int __size; element/@maxOccurs="unbounded"
multiple elements) T *m; element/@type="T"
union U m; int __union; choice
union U m;
void *m; int __type; element/@type="anyType"
void *m;

Table 2: Data member changes to support document/literal
style serialization.

which converts them to in-lined namespace qualified
local elements and attributes.

e Support for mixed content.

These xs:complexType content definitions are sup-
ported in gSOAP at the C/C++ source code level using
the declarations shown in Table 2. Attributes are de-
clared with a qualifier ’@’, STL containers such as vectors
are mapped to (potentially) unbounded sequences of ele-
ments (without STL, members that point to dynamic ar-
rays must be preceded by a int __size field that holds the
runtime array size information). The use of STL contain-
ers and pointers to arrays as shown in Table 2 is preferred
over SOAP RPC encoded arrays, see also WS-I Basic Pro-
file [23]. A union must be preceded by a variant record dis-
criminator int __union that holds the index to the union
field to be serialized, and void pointers must be pre-
ceded by int __type field that holds the runtime type tag
value of the object pointed to.

5. A Static-Dynamic Approach to XML Seri-
alization

XML serialization of objects can be implemented with
introspection, which requires a supportive run-time system.
Because standard C and C++ run-time systems do not im-
plicitly carry run-time type information on data structures
and object instantiations, we implemented a hybrid form
of static and dynamic type analysis for serializing C/C++
types in XML. Static analysis is used to build a plausi-
ble data model at compile time for representing the possi-
ble instances of object graphs by tracking down object rela-
tionships. This analysis is comparable to static shape anal-
ysis [4] and related to points-to analysis [14]. We then use
the model to generate type-specific serialization algorithms.
The generated serialization algorithms analyze the actual
run-time object graph instances using compile-time hints to
effectively serialize them in XML, and vice versa, using a
mapping that guarantees object-level coherence. We imple-
mented the approach in the gSOAP [17, 18] toolkit for C
and C++ and tested the approach for interoperability against
other toolkits such as Apache Axis and .NET.



Run-Time Object Graph Serialized XML

Source Code
struct Node A, B;
N C:
Source Code Data Model gi 7§é
typedef int SSN; A.val = 123;
struct Node A.ptr = &B.val;
) Anum =14
!nt val; A.next = &B;
int *ptr; B.val = 456;
float num; B.ptr = &C;
struct Node *next; B.num = 2.3;
. SSN ’
+ B.next = &A;

<Node id="_1">
<val>123</val>
<ptr ref="4.2"/>
<num>1.4</num>
<next>
<val id="_2">456</val>
<ptr>789</ptr>
H <num>2.3</ptr>
C <next ref="#.1"/>
</next>
</Node>

ptr | num| @ex(
cPps

>

a) Declarations and Compiled Plausible Data Model

b) Source Code and Resulting Run-Time Object Graph in XML

Figure 3: Compile-time and run-time data structure analysis.

5.1. Static Analysis

The gSOAP soapcpp2 compiler builds a plausible data
model at compile time by constructing a graph of object
relationships. The model represents the possible instances
of object graphs. The model is then used to generate type-
specific serialization algorithms that analyze the actual run-
time object graph instances to effectively serialize them
in XML, and vice versa, using a mapping that guarantees
object-level coherence.

Consider for example the type declarations shown in Fig-
ure 3(a) and the data model derived from it. The model
shows the pointer edges necessitating the placement of
pointer-checking code in the serializer and deserializer rou-
tines. For example, when serializing a Node instance, two
addresses have to be checked for pointer references: the
Node instance address and the val member address. Since
these could be identical, type disambiguation is necessary to
distinguish the references by keeping track of pointer’s tar-
get types at run time. The runtime storage overhead of this
approach is minimized, because only relevant pointers are
checked and stored in a hash table for comparison to de-
tect multi-referenced objects and graph cycles. In the exam-
ple, also all integer nodes must be checked in this case for
inbound pointer edges, e.g. the val member and the SSN
nodes. However, no pointer checks are required for floats,
e.g. the num member. Note that val is embedded within
Node, which means that it must be annotated with an XML
id attribute in the serialized stream.

The soapcpp2 compiler generates optimized serializa-
tion code based on the model. These runtime serializa-
tion algorithms use two phases. The first phase determines
which data components belong to the data structure and
which pointers are used to reference them. This phase is
only relevant for pointer-based data structures. The second
phase emits the XML encoded form of the data structure by
recursively serializing the sub-components.

5.2. Dynamic Serialization Analysis Phase 1

Phase 1 traverses the runtime data structure graph by
visiting each node and by following the pointer references
to all sub-nodes recursively. For each pointer that was fol-

lowed to a sub-node, it stores the pointer’s target address
in a hash table together with an identification of the data
type referenced by the pointer. The hash table key is a triple
of (PtrLoc,PtrType,PtrSize), where PtrLoc is the pointer’s
target address, PtrType is the type of data referenced by
the pointer, and PtrSize is the size of the object in bytes,
which is statically determined with sizeof. The PtrSize of
dynamic arrays is computed from the array size and element
size, where dynamic arrays are defined with a struct/class
containing a pointer field and size field. Node pointers are
only followed through to visit sub-nodes when the key
(PtrLoc,PtrType,PtrSize) is not already contained in the
hash table. When the key is already contained in the hash ta-
ble, then the hash table entry is marked RefType=multi to in-
dicate that a multi-referenced sub-node has been found. En-
tries in the hash table are marked RefType=embedded when
a data element that is pointed to is embedded in larger struc-
ture, such as a field of a struct or class, or an element of an
array. It is noteworthy to mention that a hash table entry is
created at run time only for each pointer in a pointer-based
data structure. No additional space is required to serialize
non-pointer-based structures.

5.3. Dynamic Serialization Phase 2

Phase 2 emits the data in XML by visiting each node in
the data structure graph and by following the pointer ref-
erences to the sub-nodes for recursive serialization. Multi-
referenced nodes (those whose hash table entry is marked
RefType=multi) are serialized as multi-referenced objects
referenced with id and ref in the XML stream. The se-
rialization settings can be set to SOAP 1.1/1.2 RPC encod-
ing. Special care is taken to serialize data elements that are
embedded within structs or arrays (that is, the hash table
entry for these elements are marked RefType=embedded) to
preserve object graph coherence. The embedded property
of data elements affects the placement of id and ref at-
tributes in the encoded form of XML.

The two-phase serialization is illustrated with the exam-
ple data structure shown in Figure 3(b) based on the data
type declarations shown in Figure 3(a). The structure con-
sists of three nodes, two structs A and B, and a node C that
contains a single integer value. The serialization starts at the




ID | PtrLoc | PtrType | PtrSize | PtrCount RefType
1 A Node 16 2 multi
2 B int 4 1 embedded
3 B Node 16 1 single
4 C int 4 1 single

Table 3: Runtime table for points-to analysis.

root struct stored at address A. The first phase consists of a
pass over the entire data structure graph to collect the prop-
erties of the pointers used in the data structure and to store
these in the runtime points-to table shown in Table 3.

Each entry has a unique index ID, a hash table key
(PtrLoc,PtrType,PtrSize) consisting of a target pointer ad-
dress PtrLoc, pointer type PtrType, and size PtrSize of the
object pointed to, an indication of the number of references
PtrCount made to the target address and the kind of refer-
ence RefType, which is either single, multi, or embedded.

The serialized XML output is shown in Figure 3(b). The
root node is serialized with 1d="_1", because it is multi-
referenced. The second struct at location B is serialized in
XML as a nested element of the first node struct, because
it has only a single reference. Note that the ptr field in
the first struct points to the val field in the second struct,
which is stored at B. Because the val field is embedded
within a struct, the ptr is serialized with a forward point-
ing ref="4#_2" attribute. This ensures that the receiving
side can decode the XML and backpatch the pt r pointer
field to point to the val field after the contents of the sec-
ond struct are decoded. The ptr field in the second struct
points to a single-referenced integer located at C. The XML
serialized value is placed directly in a ptr element with-
out a ref attribute, because it is a single reference.

The gSOAP soapcpp2-generated deserialization routines
decode the contents to reconstruct the original data structure
graph. The parser takes special care in handling the id and
ref attributes to instantiate pointers. When the data struc-
ture is reconstructed, temporarily unresolved forward refer-
ences are kept in a hash table. When the target objects of
the references have been parsed and the data is allocated in
memory, the unresolved references are replaced by point-
ers. In effect, the unresolved pointers in the Node struc-
tures are back-patched with pointer values to link the sepa-
rate parts of the (cyclic) graph structure together.

Pointers to polymorphic objects that are instances of de-
rived classes are serialized using C++ dynamic binding. The
gSOAP soapcpp2 compiler augments classes with virtual
serializers to enable pointer-based polymorphism via single
inheritance. The static analysis determines whether pointers
to instances need to be treated differently. If so, serializa-
tion and deserialization routines are generated for runtime
encoding and decoding of object graphs that have pointers
to derived instances, which requires the XML serialization
of these instances with schema-compliant xsi:type at-
tributes to hold type information so that the decoders can
accurately reconstruct the object graphs.

6. Results

The use of XML as a data transport protocol comes at
a price and the serialization of internal application data to
XML can lead to performance loss. Furthermore, scanning
an object graph for co-referenced objects can be expensive.
An implementation that is compliant with the SOAP spec-
ification ideally stores serialized objects in a table. Before
an object is serialized, the table is searched to determine if
the object is a repeated occurrence of a previously serial-
ized object, in which case 1d-href should be used. In Java
it is important to use the IdentityHashMap class for reasons
of efficiency. This class is specifically designed for cases
where reference-equality semantics are needed.

For the deserializer, putting the multi-references object
back together is also expensive. As multi-ref accessors are
placed at the end of a message in SOAP 1.1 RPC encoding,
all multi-references are forward pointing. When a stream-
ing parser, such as SAX or XPP, is used, a co-referenced ob-
ject can only be deserialized after the parser has processed
the multi-ref objects at the end of the message.

The performance in the number of roundtrip messages
achieved per second of a gSOAP benchmark client and
server application is shown in Figure 4. The performance
of a round-trip message containing a struct of size 1.2K is
shown over HTTP 1.1 without using keep-alive connection
persistence. The serialization algorithms are efficient, be-
cause runtime pointer checks for serializing object graphs
are restricted to pointer-based objects only as determined
from the static data model.

Table 4 compares the end-to-end performance of the
gSOAP toolkit for an array of strings of various sizes with
and without the multi-ref enabled (for strings) to analyze
the overhead of the algorithm that ensures object coherence.
The performance data in the table shows that the overhead

of 2% to 3% on the total time is minimal. This test was con-
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Figure 4: Performance results in number of roundtrip mes-
sages per second of a benchmark client/server application
on various platforms.



Array Size | gSOAP without Multi-ref | gSOAP with Multi-ref
1 0.576 0.596
10 0.589 0.617
100 0.791 0.811
1000 2.718 0.2760
5000 10.647 10.849
10000 20.681 20.808
25000 52.177 53.025
100000 208.479 213.669

Table 4: End-to-end performance (in milliseconds) of a
gSOAP benchmark application with and without multi-ref
encoding. The data show that gSOAP’s multi-ref implemen-
tation adds just 2% to 3% overhead, which is minimal.

ducted on two dual processor Linux machines, each config-
ured with 2.0 GHz Pentium 4 Xeon with 1GB DDR Ram
and a 15K RPM 18GB Ultra-160 SCSI drive running De-
bian Linux 3.1 (“sarge”) with the 2.4.26 kernel. The ma-
chines were connected by Gigabit Ethernet. gSOAP version
2.7e was compiled with gcc/g++ version 3.3.4. Relevant
socket options include SO_KEEPALIVE, TCP_NODELAY,
SO_SNDBUF = 32768, and SO_RCVBUF = 32768.

7. Conclusions

This paper demonstrated that object-level coherence in
XML Web services can be achieved with specialized se-
rialization algorithms to ensure data structures and object
graphs preserve their state and structure when passed from
one service application to another or when stored and re-
trieved in XML format. This paper discussed the design
space for mapping issues, along with algorithms for se-
rializing non-primitive data structures in C/C++ and Java
into XML format, while providing object-level coherence
and performance guarantees. The presented approach works
best with SOAP 1.2 RPC encoding as opposed to the doc-
ument/literal serialization style, which lacks a default ID-
REF referencing mechanism. We hope our work will spur
the Web services community to converge on an XML ID
standard and a universal reference mechanism.
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