
Benchmarking XML Processors for Applications in Grid Web
Services

Michael R. Head∗

Madhusudhan Govindaraju†

State University of New York (SUNY) at Binghamton
Robert van Engelen‡

Wei Zhang§

Department of Computer Science, Florida State University

Abstract

Web services based specifications have emerged as the un-
derlying architecture for core grid services and standards,
such as WSRF. XML is inextricably inter-twined with Web
services based specifications, and as a result the design and
implementation of XML processing tools plays a signifi-
cant role in grid applications. These applications use XML
in a wide variety of ways, including workflow specifica-
tions, WS-Security based documents, service descriptions in
WSDL, and on-the-wire format in SOAP-based communica-
tion. The application characteristics also vary widely in the
use of XML messages in their performance, memory, size,
and processing requirements. Numerous XML processing
tools exist today, each of which is optimized for specific fea-
tures. To make the right decisions, grid application and mid-
dleware developers must thus understand the complex de-
pendencies between XML features and the application. We
propose a standard benchmark suite for quantifying, com-
paring, and contrasting the performance of XML processors
under a wide range of representative use cases. The bench-
marks are defined by a set of XML schemas and conforming
documents. To demonstrate the utility of the benchmarks
and to provide a snapshot of the current XML implemen-
tation landscape, we report the performance of many dif-
ferent XML implementations, on the benchmarks, and draw
conclusions about their current performance characteristics.
We also present a brief analysis on the current shortcomings
and required critical design changes for multi-threaded XML
processing tools to run efficiently on emerging multi-core ar-
chitectures. 1

Keywords: XML, Benchmarking, Multi-Core

∗email:mike@cs.binghamton.edu
†email:mgovinda@cs.binghamton.edu
‡email:engelen@scs.fsu.edu
§email:wzhang@scs.fsu.edu
1Supported in part by NSF grants IIS-0414981, CNS-0454298, BDI-

0446224 and DOE Early Career Principal Investigator grant DEFG02-
02ER25543.

1 Introduction

Over the past few years, designers of Web services have
closely collaborated with the grid community to propose
numerous XML-based protocol specifications to bridge the
platform and programming language gap in heterogeneous
wide-area systems. XML has many important features, in-
cluding platform and language independence, flexibility, ex-
pressiveness, and extensibility. Thus, the combination of
these characteristics with the interoperability trait of Web
services is an attractive way to compose distributed appli-
cations. Additionally, the use of XML based protocols for
security, routing, messaging, resource policies, workflows,
events, and other tasks, provides an effective platform to
build applications over computational grids [Berman et al.
2003; Foster and Kesselman 1998].

The recently adopted standards such as the Open Grid Ser-
vices Architecture (OGSA) [Foster et al. 2005] and Web
Services Resource Framework [WSRF 2004] define a set
of standard interfaces and behaviors of grid services in
terms of Web services based technologies. Some of the
other important standards and specifications in the Web ser-
vices space include Web Services Description Language
(WSDL) [Christensen et al. 2001], SOAP (formerly, Simple
Object Access Protocol) [Gudgin et al. 2003], Business Pro-
cess Execution Language for Web Services (BPEL4WS) to
orchestrate workflows, and WS-Security set of XML spec-
ifications. Additionally, many grid applications use well-
defined XML schemas for the XML documents used in var-
ious parts of the application.

XML is a ubiquitous tree-oriented data representation lan-
guage. A WSDL document is an XML based specification
that provides a standard language to precisely specify all the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00 c©2006 IEEE

information necessary for communication with a Web ser-
vice, including the interface of the service, its location, the
details of the data types it uses, and the list of communica-
tion protocols it supports. SOAP is the most widely used
communication protocol for Web services, facilitating the
exchange of XML-based structured information with HTTP
widely used as the transport medium. Due to the heteroge-
neous nature of the grid infrastructure and the diverse char-
acteristics of applications, the use of XML in SOAP makes
it ideally suited to serve as the common standard communi-
cation protocol.

Various studies [Abu-Ghazaleh et al. 2004b; Chiu et al.
2002; Govindaraju et al. 2000], however, have shown that
the use of XML can hinder performance. XML primarily
uses UTF-8 as the representation format for data. Send-
ing commonly used data structures via standard implemen-
tations of SOAP incurs severe performance overheads, mak-
ing it difficult for applications to adopt Web services based
grid middleware. Due to the widespread adoption of stan-
dards in Web services by the grid community, it is critically
important to investigate the impact on performance for the
kinds of XML documents used in grid applications. Several
novel efforts to analyze the bottlenecks and address the per-
formance at various stages of a Web services call stack have
been discussed in the literature [Abu-Ghazaleh et al. 2004a;
Abu-Ghazaleh et al. 2004c; Abu-Ghazaleh et al. 2004b; Chiu
et al. 2002; Govindaraju et al. 2000; van Engelen 2004a; van
Engelen and Gallivan 2002]. The flexibility and loose cou-
pling of XML-based standards allows senders and receivers
of XML documents to independently deploy selected opti-
mizations, according to the communication patterns and data
structures in use.

Some of the optimizations for XML toolkits (also referred
to as XML processors in this paper) discussed in the liter-
ature include the following: (1) gSOAP parser [van Enge-
len 2004a] uses look-aside buffers to efficiently parse fre-
quently encountered XML constructs; (2) the XML Pull
Parser (XPP) [Slominski 2004] caches parsed strings to
avoid multiple allocations of strings; (3) we earlier pro-
posed a technique to enhance performance of parsing XML
schemas by using schema-specific parsing along with trie
data structures so that frequently used XML tags are parsed
only once [Chiu et al. 2002; van Engelen 2004b]; (4) gSOAP
uses a performance aware compiler to efficiently parse XML
constructs that map to C/C++ types. It uses a single-pass
schema-specific recursive-descent parser for XML decoding
and dual pass encoding of the application’s object graphs
in XML [van Engelen and Gallivan 2002]; (5) The TDX
parser [Zhang and van Engelen 2006] uses a table driven ap-
proach to combine parsing and validation into one pass to
enhance the processing time for documents; (6) The VTD-
XML [Zhang 2003] parser achieves performance improve-
ment via incremental update, hardware acceleration, and na-
tive XML indexing.

The MetaData Catalog Service (MCS) [Singh et al. 2003]
and the reference implementation of the WSRF specification,
available from the Globus website [Globus Toolkit 2002],
use the Axis [Axis Java 2002] toolkit to process XML doc-
uments. Our results show that for micro-benchmarks and
data-structures commonly used in grid applications, Axis is
not a good choice in terms of performance. However, as
the architecture of the reference implementation of WSRF
(and even Axis) is modular in nature and facilitates the use
of specialized pluggable modules for various aspects of Web
services, the results of the benchmark framework can be
used to plug in specialized XML processing modules for
each target application. Other significant efforts to imple-
ment the WSRF implementation that have a modular de-
sign include WSRF.NET [Humphrey and Wasson 2005] and
WSRF-Python [Govindaraju et al. 2005].

It is important to compare, contrast, and evaluate different
XML implementations, so that end-users can make informed
decisions on which toolkit to use for their particular applica-
tion. Specifically, the motivations for the design of a com-
prehensive performance evaluation framework for XML pro-
cessors are:

• Grid applications place a wide range of requirements on
the communication substrate and data formats. These
requirements include low latency, high throughput com-
munication, minimal memory footprint for improved
caching efficiency, specialized handling of scientific
data, and overlap of computation and communication
by streaming XML messages via HTTP 1.1 protocol.
These disparate requirements have led to a wide range
of design and implementation choices. A comprehen-
sive benchmark suite tailored for grid applications can
aid in determining the XML (and Web services) toolkit
that has the most optimized implementation for the
class of grid applications under consideration.

• A wide range of implementations of XML Parsers
is available [SoapWare.org 2001], including Xerces
(DOM and SAX) [Xerces 2003], gSOAP-parser [van
Engelen and Gallivan 2002], Piccolo [Oren 2002],
Libxml [Veillard 1998], Expat [Clark 1998],
kXML [Haustein 2000], XPP3 [Slominski 2004],
VTD-XML [Zhang 2003], and Qt4 [Trolltech 1998].
Simple and straight forward implementations of XML
parsing paradigms can result in a severe impact on
performance. A comprehensive benchmark suite
can help library developers identify and isolate the
modules in their toolkits that need to be optimized.
Ideally, toolkits will be designed to determine the data
structures, use-cases, and communication patterns in
the application code and have the ability to dynamically
switch to the most optimized module for the use-case
scenario.

• The reference implementation of the WSRF spec-
ification, available from the Globus Alliance web-

site [Globus Toolkit 2002], uses the Axis[Axis Java
2002] toolkit. The architecture of the reference imple-
mentation is modular in nature and facilitates the use
of specialized pluggable modules for various aspects
of Web services. The proposed framework will facil-
itate in the addition of application and feature specific
modules to WSRF implementations. For example, the
WSRF-C implementation can be enhanced by incorpo-
rating a Schema Specific Parser (SSP)[Chiu et al. 2002;
van Engelen 2004b] that kicks-in when data conform-
ing to known schemas is encountered; or a switch can
be added to the serialization handler so that differential
serialization [Abu-Ghazaleh et al. 2004b] is used for
cases when similar content or structure of XML data is
being repeatedly exchanged.

• The current set of Grid Web services tools are not tai-
lored to utilize the capabilities for parallelism available
in the emerging multi-core architectures. The lessons
gained from the execution of the benchmarks will also
provide insight into software design of toolkits and the
possible changes required in the XML document struc-
ture itself, to aid in automatic detection of regions in the
XML payload that can be processed in parallel.

With the reasons mentioned above as motivation, we have
designed and developed a common standard XML bench-
mark suite for testing the performance and scalability of dif-
ferent XML toolkits, with a focus on data structures com-
monly used in grid services and applications. The SOAP
community currently uses a set of well-known SOAP pay-
loads and interfaces to test the interoperability of various
toolkits [XMethods.com 2001]. Our work complements
these efforts in that it aims to provide a standard set of work-
loads to test the various features and performance character-
istics of XML implementations, rather than just the interop-
erability via the SOAP protocol. In designing these bench-
marks, we draw on our experience in implementing and
optimizing features of three different independent toolkits
for Web services: gSOAP [van Engelen 2003; van Engelen
2004a; van Engelen and Gallivan 2002], XSOAP [Slomin-
ski et al. 2001; Chiu et al. 2002; Govindaraju et al. 2000;
Slominski 2004], and bSOAP [Abu-Ghazaleh et al. 2004a;
Abu-Ghazaleh et al. 2004c; Abu-Ghazaleh et al. 2004b].

Our benchmark suite provides grid middleware and appli-
cation developers with working examples of XML features,
and provides a common way of testing and assessing the
performance of their specific implementation of these fea-
tures. Another contribution is the snapshot it provides of
the current performance of many popular XML implementa-
tions. This performance study provides insight into the rel-
ative strengths and weaknesses of different implementations
under different usage scenarios, and demonstrates the util-
ity of the benchmark suite. The benchmark suite and driver
programs will be made publicly available from our website,
and can be used to continuously compare the performance

of available toolkits. The performance results in this pa-
per show how effectively the benchmark suite can be used
to select an appropriate XML toolkit for specific application
needs.

Our benchmark framework will benefit both Web services
developers and grid application programmers. Web services
and grid middleware (library) developers can gain insights
into the various factors and design choices that determine
the performance of processing XML documents, thereby im-
proving their ability to build better faster implementations.
Application developers can use the benchmark suite to test
and compare the performance of various aspects of differ-
ent toolkits, and accordingly select the one that best suits
their application’s needs. We present performance results
on many widely used toolkits including Xerces (DOM and
SAX), gSOAP-parser, Piccolo, Libxml, Expat, XPP3, and
Qt4.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the design of benchmarks in HPC. Section 3
provides the motivation, description and insights into the
benchmark suite that we have designed. Section 4 describes
our experimental setup and a representative set of perfor-
mance results. We present a set of observations that can be
drawn from our test results in Section 5. We present a simple
analysis of XML toolkit design for multi-core architectures
in Section 6. We discuss related work in Section 7 and end
with pointers to future work in Section 8.

2 Benchmarks in HPC

Various benchmarks have been designed to test different fea-
tures of HPC systems. These benchmarks can be broadly
classified into two categories: low level probes and applica-
tion based benchmarks [Chun et al. 2004].

Low-Level Probes: Benchmarks in this category are de-
signed as probes to evaluate the performance of a system for
fundamental operations. In recent months, the HPC Chal-
lenge Benchmark has been released by the DARPA HPCS
program [Luszczek et al. 2005]. This benchmark is geared
towards evaluating performance boundaries for future petas-
cale computers. The components that the HPCC bench-
marks are designed to stress are: LINPACK [Petitet et al.
2004] (CPU floating point performance), STREAM [Mc-
Calpin 1997] (memory subsystem and streaming perfor-
mance), GUPS (Giga updates per sec) that stresses the com-
munication fabric and protocol for short messages, and FFT
stresses the bisection bandwidth of the system).

Representative Applications Based Benchmarks: these
benchmarks capture the requirements of specific class of ap-
plications. The NAS Parallel Benchmarks (NPB) [Bailey
et al. 1994], which originated from applications in compu-
tational fluid dynamics (CFD), are a set of programs de-

signed to compare the performance of parallel supercomput-
ers. These benchmarks consist of three pseudo-applications
and five kernels, including GridNPB3 [Frumkin and Wijn-
gaart 2002], which includes serial and concurrent reference
implementations of distributed applications in Fortran and
Java. It also has a suite of benchmarks named Rapid Fire that
test the capability of a grid infrastructure to manage and ex-
ecute a large number of short lived processes. The Standard
Performance Evaluation Corporation (SPEC) [SPEC 1992]
corporation defines several popular benchmarks. These in-
clude Java Client/Server benchmark to measure the perfor-
mance of J2EE application servers, speed of request han-
dling capabilities of an NFS (Network File Server) system,
and a suite for evaluation of the performance of parallel
and distributed architectures. The ParkBench [Hey and Lan-
caster 2000] and SPLASH [Woo et al. 1995] benchmarks are
also well known.

3 Design of the Benchmark Suite
for XML Processing

Consistent with trends in HPC, we have divided the bench-
mark suite for XML processing tools into two categories:
feature probes and application-class benchmarks. This sec-
tion explains the rationale for each benchmark’s design, and
describes various optimizations that can be used to improve
the performance of a toolkit for the features exercised by
the benchmark. The benchmark suite is designed as a set
of XML Schema documents along with example conform-
ing documents, and a driver that reads trace data from local
files and automates the testing process.

3.1 Feature Probes

These probe specific features of XML (and Web service
toolkit) implementations such as toolkit overhead, pro-
cessing of documents as required in serialization and de-
serialization in grid communication, management of ar-
rays of various types, exercise of the buffering algorithms,
handling of namespaces, scalability when dealing with co-
referenced objects (multi-ref feature), and rate of handling
typical SOAP messages.

3.1.1 Overhead

The overhead of the toolkit quantifies the minimum response
time in processing an XML document. This measurement
does not include costs associated with cold start or warmup,
such as initialization costs due to loading of the necessary
dynamic libraries or Java class files. Measurements are taken
after the first few iterations.

The benchmark for this feature is a simple XML document
that has a single element with no nested elements or at-
tributes. The measured cost shows the minimum cost as-
sociated with memory allocation, de-allocation, and initial-
ization of the parsers internal tables. This cost will be inher-
ent to every use of the XML toolkit, and the results indicate
which toolkit is best designed for extremely small XML doc-
uments.

3.1.2 Buffering

Since XML toolkits primarily deal with data in ASCII, they
make extensive use of string operations, including search for
specific sentinel characters, convert binary types to string
formats, and incremental run-time allocation of strings. The
default implementations of these features can often result
in a performance penalty. The parsing and storage of fre-
quently encountered XML constructs can be optimized via
look-aside buffering schemes. gSOAP reuses the memory
allocated for storing attribute name/value pairs to improve
performance of parsing XML. This is particularly effective
in parsing the xsi:type attribute which may be present
in every XML element of the SOAP payload. Similarly,
XPP3 caches parsed strings and avoids multiple allocations
of strings for processing XML input with values that repeat
frequently, such as in the case of arrays.

The benchmark for this feature is exercised by XML doc-
uments representing SOAP-encoded arrays of various sizes
and primitive types. Managing the repeated occurrences of
xsi:type for each element of the array tests the buffering al-
gorithm of the XML toolkit. As described in Section 3.2,
grid applications typically exchange arrays of various types,
and are directly affected by this feature of the toolkit they
employ.

3.1.3 Managing Namespace-qualified Elements

The primary purpose of namespaces is to distinguish be-
tween identical names of elements, attributes, and tags that
appear in an XML document. The extensive use of names-
paces in XML documents makes it critical to evaluate the im-
plementation of this feature. Each namespace is associated
with a URI. A specialized attribute xmlns is used by tags to
point to a fully qualified name. In a typical XML document,
there are usually a few xmlns attributes but a large number of
references to these attributes. The standard implementation
of namespaces involves the use of a stack to store names-
pace prefixes and associated URIs. The performance limi-
tation of the stack implementation stems from the repeated
comparison operations that are needed in this implementa-
tion module. An optimization to manage namespaces is to
use one table lookup to determine a corresponding internal
namespace prefix of the xmlns attribute. The table should be

populated with information obtained from the XML schema
of the document being processed. In this scheme, the stack
just records the translated prefixes to provide efficient match-
ing of qualified tags. This results in reduction of the amount
of storage and number of comparisons of prefixes.

The benchmark consists of XML documents in grid applica-
tions with plenty of xmlns bindings, such as those that are
generated as a result of applying the canonicalization algo-
rithm [W3C]. The canonicalization algorithm defines a stan-
dard form for an XML document, meant to guaranty bit-wise
comparisons for logically equivalent documents. We chose
canonicalized forms of example WS-Security standard docu-
ments for the benchmark. Another benchmark that tests this
feature is the XML representation of nested data structures
such as linked lists, wherein several tags and element names
are identical. This forces a toolkit to apply its namespace
resolution algorithms to correctly resolve all the names ac-
cording to their namespaces.

3.1.4 Object Graphs and Co-Referenced Objects

An important requirement for Web services based grid ap-
plications is that data structures and object graphs be con-
sistently stored and manipulated [van Engelen et al. 2006].
SOAP-RPC 1.1 encoding provides multi-referencing to se-
rialize (cyclic) object/data graphs, wherein multi-ref acces-
sors are placed at the end of a message, so that all multi-
references are forward pointing. Object copying or pointer
back-patching must be used by an XML processor for each
forward pointing edge to complete the edge references in the
partially instantiated object graph. The SOAP 1.2 RPC en-
coding format is more natural, and allows both forward and
back edges, but no constraints are given to avoid object copy-
ing or back-patching. This design is analogous to the use of
pointers and references in many programming languages to
refer to one instance of an object from multiple locations.

When a streaming parser, such as Simple API for XML
(SAX) [Xerces 2003] or XPP [Slominski 2004], is used, a
co-referenced object can only be deserialized after the parser
has processed the multi-ref objects at the end of the message.
Even though the DOM model is simple to use for such cases,
it imposes a performance penalty as the entire message has to
be stored in memory. Our performance tests show that in the
widely used Apache Axis toolkit, every object in the graph is
serialized with id and href using an inefficient non-scalable
run-time algorithm.

In Java toolkits, if the common approach of using the
equals() method is invoked, instead of IdentityHashMap, to
compare all objects to check for co-references, decoding an
XML document representing a graph can result in an O(n2)
serialization algorithm, hurting the scalability of the appli-
cation. The gSOAP toolkit uses generated routines to de-
code the XML document and reconstruct the original data

structure graph. The parser takes special care in handling the
id and ref attributes to instantiate pointers, using pointer
back-patching and object copying when required. When the
data structure is reconstructed, temporarily unresolved for-
ward references are kept in a hash table keyed with the id
values. When the target objects of the references have been
parsed and the data is allocated in memory, the unresolved
references are back-patched.

The workloads that we have designed for this benchmark
consist of XML representation of a graph of nodes, and an
array of strings of various sizes, wherein some of the array
elements are identical. A conforming toolkit needs to test
for co-references for each node and element. Even though
the use of a hash-table is efficient, for large arrays it may re-
sult in overflow chains, and the lookup may not always be in
constant time.

3.1.5 Processing SOAP Messages

SOAP is the most widely used communication protocol in
Web services based grid middleware. A SOAP message is
formally specified as an XML infoset, which is an abstract
description of the contents of the message. XML is the most
commonly used on-the-wire representation of the infoset. A
wide range of SOAP implementations, developed in vari-
ous programming languages using different XML parsers,
are available today. As a result, it is important to collect
and analyze performance statistics for processing of XML
messages that are generated as part of on-the-wire format of
SOAP communication.

Our benchmark consists of SOAP messages for arrays of dif-
ferent data types and sizes that are commonly used in grid
applications. The data types include floats, integers, dou-
bles, strings, base64 encodings, and structs with few primi-
tives. The size of the array for various payloads vary from a
few elements to 100,000 elements, as we do not expect the
SOAP protocol to be used for larger message sizes.

3.2 Application Class Benchmarks

The second set of benchmarks in our framework is
application-oriented and captures typical XML messages in
different classes of grid applications. The analysis of the
these applications running on the grid infrastructure based
on Web services will provide more insight into what new
metrics and core kernel benchmarks need to be added to the
suite for a more robust and well designed benchmark suite.
Initial set of applications that we have considered include in-
formation service components, replica location services, re-
source management services, security components, and data
grid services. In this paper we present results with example
payloads of workflow documents, XML messages sent via
the SOAP protocol in the MetaData Catalog Service (MCS),

application schemas such as HapMap [HapMap 2003] and
BioMedical Applications, Mesh Interface Objects (MIOs)
used in scientific computing, events stream used in applica-
tions such as Linked Environments for Atmospheric Discov-
ery LEAD [LEAD Events 2003] project.

3.2.1 Workflow Documents

Grid workflows have emerged as critical tools to facili-
tate in the development of complex scientific applications.
Workflows allow the integration of legacy code and Web
services from various organizations, developed in different
languages, into a a single distributed applications [Gannon
et al. 2004]. There are many scientific workflow systems
tailored for use in grid computing applications, many of
which use XML based representations to specify the work-
flows [Slominski 2005].

We have curently added two sets of workflow documents:
(1) example workflow documents from the Kepler [Kepler
2003] project for scentific applications. The Kepler project’s
goal is to provide an open source scientific workflow system
to efficiently execute workflows using emerging Grid-based
approaches; (2) example workflow documents currently used
in for the LEAD application, which is used for creating an
integrated, scalable cyberinfrastructure for mesoscale mete-
orology research and education. As our benchmark suite will
be publicly available for download and use, we expect to add
new workflow documents from other frameworks in the near
future.

3.2.2 MetaData Catalog Service

The Metadata Catalog Service (MCS) [Singh et al. 2003]
runs on top of a Web service that provides functionality to
store and retrieve descriptive information (metadata) about
logical data items. MCS has been developed as part of the
Grid Physics Network (GriPhyN) project, with an overall
aim of supporting large-scale scientific experiments. MCS
is a classical example of a system that uses XML commu-
nication between clients and the Grid service, via the SOAP
implementation of Axis [Axis Java 2002]. The performance
study reported in [Singh et al. 2003] shows that the Web
service overhead causes an average performance drop by a
factor of 4.8. We used the MCS schema to generate com-
pliant XML documents of various sizes to study the XML
toolkit that is most ideally suited to address the performance
bottleneck reported by the MCS authors.

3.2.3 Human Genome Project

The International HapMap project aims to develop a hap-
lotype map of the human genome [HapMap 2003]. The
schemas are used to describe the common patterns in human

DNA sequence variation. It is expected that grid computing
solutions will play a significant role in the human genome
project. Our benchmark suite consists of synthetic work-
loads that are compliant with the schemas for HapMap, to
determine the toolkit that performs best for this project.

3.2.4 Mesh Interface Objects

Mesh interface objects (MIO) structures are of the form (int,
int, double), where the two integers represent a mesh coordi-
nate and the double represents a field value. This data struc-
ture is often used by scientific components on the grid. MIOs
are used in communication between two Partial Differential
Equation (PDE) solvers in different domains. An example
usage is in a climate model that ties together an atmospheric
simulator with an ocean circulation simulator [Barron et al.
1994]. Another example is a fluid simulation that is cou-
pled with a solids structure code, as is done in some indus-
trial process modeling [Illinca et al. 1997]. Our benchmark
framework consists of MIO payloads that test the scalability
of the XML parser, as the number of MIOs is varied from a
few to 100,000 elements.

3.2.5 Event Streams

WS-Notification and WS-Eventing have emerged as the stan-
dard XML-based specifications for asynchronous notifica-
tions to interested listeners. They define the message ex-
change formats along with the baseline set of operations re-
quired by producers and consumers of events. These event
specifications provide a de-coupled communication medium
for grid applications. Typical uses of events include moni-
toring, debugging, and reporting occurrences such as a suc-
cessful creation of a remote file. Notification services is also
an integral part of services described in the WSRF specifica-
tion [WSRF 2004].

We have defined two types of events. First, a simple event
data structure as a struct with three data members: an inte-
ger (sequence number), a double (time stamp) and a string to
store the event message. This definition provides both sim-
plicity and flexibility. The string can be used to store small
values such as a url for GridFTP transfer, or a long string
requesting resource properties from a WSRF service. Sec-
ond, we have included XML documents conforming to the
WS-Notification and Eventing schemas to conform to the re-
quirements of many existing and emerging grid applications
that are expected to use these specifications.

Our benchmark driver can be configured to choose the size of
the elements in the events schema that accurately reflects the
needs of events in the application of interest, and accordingly
decide the best toolkit to process event streams.

3.2.6 WS-Security Documents

The WS-Security suite of security specifications address a
broad range of issues concerning protection of messages
exchanged in a Web services environment. This model
brings together formerly incompatible technologies such as
Kerberos and public key infrastructure. The broad set of
specifications include authentication, authorization, privacy,
trust, delegation, integrity, auditing, and confidentiality. The
OGSA Security Working Group, whose charge is to ad-
dress the grid security requirements, has declared that the
OGSA security architecture will leverage the Web services
security foundations published in the WS-Security specifi-
cations [Nagaratnam and Humphrey 2003]. Our benchmark
suite consists of example documents from the WS-security
specifications. A unique feature of these documents is the
large number of namespaces for most of the elements.

Additionally, we have also included sample XML documents
used by scientists at the National BioMedical Computation
Resource (NBCR), who are building an end-to-end Web ser-
vices architecture for Bio-Medical applications [Krishnan
et al. 2005].

4 Representative Performance Re-
sults

The Linux test environment consisted of one dual core ma-
chine, with an Intel(R) Pentium(R) D CPU 3.00GHz with
256MB PC4200 RAM and a 7200 RPM 80GB SATA-2 drive
running the i386 edition of Ubuntu Linux 5.10 (“breezy”)
with the 2.6.12 kernel compiled for i686 SMP processors.
All C and C++ based parsers were compiled with gcc/g++
version 4.0.2. All Java-based parsers were compiled and
run with the Sun Java 5 SDK, version “1.5.0 06”. The C#-
based parser is from the implementation from System.Xml
in Mono version 1.1.8.3. The version of the other parsers
presented are as follows: expat 1.95.8, gsoap 2.7.0d, libxml2
2.6.21, piccolo 1.0.4, xerces-c 2.6.0, xerces-j 1.4.4, and xpp3
1.1.3 6.

Figure 1 shows overhead incurred by various toolkits.
Among the toolkits we tested, gSOAP-parser has the least
overhead of 5.5 µs, and Expat’s overhead at 14 µs is the next
best. The Mono-Reader (developed in C#) parser, which is a
light-weight pull-model based parser, has the least overhead
(33 µs) among non C/C++ parsers. Both Mono-DOM and
XPP3 have an overhead of approximately 60 µs. These two
have the next lowest overhead among non-C/C++ parsers.
Note that the Xerces implementations in both Java and C
have relatively high overheads. Libxml, Piccolo, Qt4, per-
form better than Xerces, but have an overhead more than
1millisecond.

In Figure 2, we chose two grid applications (Workflow and

 0

 1

 2

 3

 4

 5

 6

 7

 8

xp
p3

xe
rc

es
−

j−
sa

x

xe
rc

es
−

j−
do

m

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

qt
4−

sa
x

pi
cc

ol
o

m
on

o−
re

ad
er

m
on

o−
do

m

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

All Parsers, Overhead Test

Figure 1: The overhead associated with each parser. We run
a tiny XML file through each parser 20 times and measure the
parse time. Because the XML file is so small, this effectively
measures each parser’s setup and cleanup time. gSOAP’s
overhead is the lowest at 110 µs. Xerces-J-DOM’s overhead
is twice that of Xerces-J-SAX at 7029 µs.

hapmap_1797SNPs.xml
molecule_1kzk.pretty.xml
workflow_Atype.xml
workflow_PIW.xml

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

C/C++ Parsers, Application−level Inputs

Figure 2: Performance of C/C++-based parsers on some
large grid applications. Files sizes range from 277KBytes
(workflow PIW.xml) to 4.9MBytes (hapmap 1797SNPs.xml)
and are parsed 20 times in succession. All parsers processed
the HapMap file in approximately 2s, with the exception of
Xerces-C-DOM, which took about 5s.

0

1000

2000

3000

4000

5000

6000

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Pa
rs

e
T

im
e

fo
r

20
 r

un
s

(m
s)

Number of Elements in the Array

Parsing Performance for SOAP Payloads of double Arrays

expat
gsoap
libxml2-dom
libxml2-sax
qt4-sax
xerces-c-dom
xerces-c-sax

Figure 3: Scalability of C/C++-based parsers over arrays
of doubles in SOAP payloads. Here the parsers are fed
XML documents containing SOAP-serialized arrays of dou-
bles. Expat leads the group parsing a document containing
100,000 doubles 20 times in 744ms. Xerces-C-DOM gen-
erates a DOM each parse, and performs the same task in
5,965ms.

0

1000

2000

3000

4000

5000

6000

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Pa
rs

e
T

im
e

fo
r

20
 r

un
s

(m
s)

Number of Elements in the Array

Parsing Performance for SOAP Payloads of int Arrays

expat
gsoap
libxml2-dom
libxml2-sax
qt4-sax
xerces-c-dom
xerces-c-sax

Figure 4: Scalability of C/C++-based parsers over arrays of
integers in SOAP payloads. Similar to Figure 3, we test each
parser against a set of XML documents containing SOAP-
serialized arrays of varying size. In contrast to Figure 3,
all parsers improve when handling integers versus doubles,
though gSOAP and Qt4-SAX both improve more than the
others.

 0

 1

 2

 3

 4

 5

 6

 7

 8

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

qt
4−

sa
x

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

C/C++ Parsers, WSMG Notification Message

Figure 5: C/C++-based parsers using WS-MG notification
messages. Again, Expat is the best performing parser, pro-
cessing the WSMG notification message 20 times in 1.48ms.
Xerces-C-Dom tops the chart at 7.31 ms.

 0

 2

 4

 6

 8

 10

 12

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

qt
4−

sa
x

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

C/C++ Parsers, WSSE Message

Figure 6: C/C++-based parsers using WSSE security mes-
sages. The results are similar to those of Figure 5, except
that Qt4-SAX performs the worst at 10.2 ms.

hapmap_1797SNPs.xml
molecule_1kzk.pretty.xml
workflow_Atype.xml
workflow_PIW.xml

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000
xp

p3

xe
rc

es
−

j−
sa

x

xe
rc

es
−

j−
do

m

pi
cc

ol
o

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

Java Parsers, Application−level Inputs

Figure 7: Performance of Java-based parsers on some large
grid applications. This is the same test as shown in figure 2,
using Java-based parsers. There is some interesting vari-
ability here. XPP3 handles the workflow tests in roughly
10% the time of the other parsers, but is squarly in the mid-
dle of the group for the HapMap and Molecule tests.

0

500

1000

1500

2000

2500

3000

3500

4000

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Pa
rs

e
T

im
e

fo
r

20
 r

un
s

(m
s)

Number of Elements in the Array

Parsing Performance for SOAP Payloads of int Arrays

piccolo
xerces-j-dom
xerces-j-sax
xpp3

Figure 8: Scalability of Java-based parsers over arrays of
integers in SOAP payloads . The same test as figure 4 for
parsers written in Java. We see that Piccolo and XPP3 are
equivalent here.

0

500

1000

1500

2000

2500

3000

3500

4000

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Pa
rs

e
T

im
e

fo
r

20
 r

un
s

(m
s)

Number of Elements in the Array

Parsing Performance for SOAP Payloads of string Arrays

piccolo
xerces-j-dom
xerces-j-sax
xpp3

Figure 9: Scalability of Java-based parsers over arrays of
strings in SOAP payloads. Similar to the other SOAP pay-
load tests, here the elements in the arrays are text strings, as
opposed to textual representations of numbers.

wsmg_notification−msg.xml
wsse_wsse−request.xml

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

xp
p3

xe
rc

es
−

j−
sa

x

xe
rc

es
−

j−
do

m

pi
cc

ol
o

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

Java Parsers, WSSE and WSMG Messages

Figure 10: Java-based parsing of WSMG notification mes-
sages. The same tests as shown in figures 5 and 6, ap-
plied to Java-based parsers. Here Piccolo and XPP3 again
show much better performance than either Xerces-J-DOM
or Xerces-J-SAX. XPP3 parses the message in 30% of the
time it took Xerces-J-SAX, which has a similar program-
ming model.

0

20

40

60

80

100

120

140

160

180

200

TDX eXpat gSOAP Xerces-c

T
im

e(
us

)

validation

decoding+validation

scanning+parsing

parsing+validatiion

scanning

Figure 11: TDX parser vs. other C/C++-based parsers de-
coding a SOAP payload containing an array of strings. TDX
combines validation with parsing. It’s table-driven design
enables it to perform parsing and validation in less than half
the time that it takes expat to parse without validation.

HapMap), with different payloads ranging from 277KB to
4.9MB. We found that apart from Xerces-c-DOM, the rest
of the parsers were able to execute the benchmark within 2
seconds. Depending on the exact performance needs of the
application, one among Expat, gSOAP, and Libxml can be
used for C/C++ based middleware for these applications.

Figure 3 and Figure 4 compare the performance of C/C++
based toolkits for arrays of doubles and integers respectively.
The payloads consist of XML documents generated by seri-
alization according to the SOAP protocol. The size of the ar-
rays was varied to 100,000 elements, which we believe is the
upper limit for usage via SOAP-based communication. Fig-
ure 3 shows that the Expat toolkit performs the best (744 ms,
for 20 iterations of size 100,000), while the Xerces-C-DOM
toolkit is orders of magnitude slower and does not scale well.
For the same array sizes, due to conversion to ASCII format,
the payload for array of integers is less than that of array
of doubles, even though the underlying tree structure is the
same. So, the parsers perform better for array of integers, as
can be seen in Figure 4. In particular, gSOAP and Qt4-SAX
show marked improvement.

In Figures 5 and 6, we present results when toolkits parse
typical XML payloads for WS-Messenger [Huang et al.
2006] and WS-Security documents that are small in size but
contain lots of namespace qualifications. The surprising re-
sults we see in these two graphs is that Qt4-SAX performs
worse than Xerces-DOM for WS-Security documents. Ex-
pat, again, is the best toolkit for these kinds of XML mes-
sages, slightly outperforming gSOAP.

We present performance of Java-based parsers in Figure 7.
Interestingly, XPP3 handles the smaller workflow docu-
ments better than other parsers, while Piccolo performs

best for larger sized documents used in applications for
HapMap (hapmap 1797SNs.xml) and biomedical projects
(molecule 1kzk pretty.xml).

Figure 8 shows that either of Piccolo or XPP could be used
in Java-based grid frameworks for handling XML payloads
generated from SOAP representation of integer arrays. The
results differ from the case when Piccolo and XPP handle ar-
rays of complex types (structs) and do not have similar per-
formance, as shown in Figure 7. The performance for arrays
of strings in Figure 9 presents the same conclusions as the
case with array of integers in Figure 8.

As opposed to the large size application messages used in
Figure 7, for smaller size XML documents represented by
WS-Notification and WS-Security documents in Figure 10,
Piccolo and XPP3 have comparable performance, while the
the Xerces-Java toolkit performs poorly.

TDX combines parsing and validation together, so parsing
and validation cannot be separated. TDX scans and tok-
enizes the XML message in a separate stage, so scanning
together with parsing was measured. The other parsers tested
combine parsing with scanning. The result is shown in Fig-
ure 11: TDX scans, parses, and validates in much less time
than it takes any other parser to even scan and parse.

5 Recommendations

• If low overhead is desired, for example when very small
documents need to be processed, then the gSOAP-
parser and Expat are the ideal choices for C/C++ frame-
works. For Java or C# based toolkits, the Mono-reader
should be used. XPP3 and Mono-DOM also have
very low overheads, and should be preferred over Pic-
colo, Libxml2, and Qt4. The Xerces toolkit performs
the worst among the toolkits we tested, and should be
avoided for applications where overhead is critical.

• Xerces has a modular design and provides a great deal
of flexibility for users to add their modules and map-
pings. As a result it is a popular choice for many appli-
cations. So, in C/C++ toolkits, if Xerces has to be used,
our results show that the SAX implementation should
be used, rather than the DOM model. The DOM model
has a prohibitive overhead for arrays of scientific data
such as doubles, floats, and integers. If performance
and scalability are important, and array sizes beyond
10,000 need to be parsed, then gSOAP-parser and Ex-
pat should be employed.

• The Buffering algorithms and management of names-
paces are exercised extensively for processing array
of strings. Among the C/C++ parsers, we note that
gSOAP and Expat are comparable. Due to the look-
aside buffering scheme and optimizations for handling
namespaces in gSOAP, it performs well for large array
sizes. As with arrays of doubles and integers, Xerces-

DOM should not be used for processing large arrays of
strings.

• For Java-based frameworks, Piccolo and XPP3 have
comparable performance, and out-perform the Xerces-
Java implementation. Again, if Xerces-Java has to be
used, then for performance, its SAX model should be
used instead of DOM.

• XPP3 performs the best among Java toolkits for pro-
cessing documents with complex types, such as some
Kepler based workflow examples, whose sizes are a few
hundred KBs. However, once the size exceeds one MB
(Biomedical and Genome XML documents), Piccolo
outperforms other toolkits.

• The MCS toolkit should use XPP3 or Piccolo to parse
XML messages sent between the clients and the MCS
server. C/C++ based clients, should use gSOAP or Ex-
pat to connect to MCS. These choices, instead of using
the currently employed Axis toolkit, will significantly
reduce the Web services overhead (factor of 4.8) that
was reported in the MCS performance results [Singh
et al. 2003].

• Pluggable modules should be incorporated into the
communication medium of the reference WSRF-Java
implementation, so that Axis toolkit based processing
can be replaced by the efficient libraries of Piccolo or
XPP3. These toolkits perform better than the other Java
toolkits for WS-Notification documents, arrays of prim-
itives and complex types, and WS-Security documents.

• The model used by the TDX parser has promise for
high-performance XML processing needs, as it effi-
ciently combines validation and scanning in one step.
However, it is only applicable when the schema for the
XML document to be processed is known in advance.

6 Design for Multi-core architec-
tures

For efficient use of multi-core architectures, it is important
for XML toolkits to minimize the cost of synchronization,
multi-thread overhead, and use of mutex. With the currently
used sequential-access formats of XML documents, if the
document is not pre-scanned, the parser threads need to de-
termine their starting points by moving a cursor over the doc-
ument. The cursor may be controlled by one thread, or co-
operatively. However, moving the cursor is a costly sequen-
tial operation that must follow XML syntax rules and handle
local namespace bindings. Scanning XML is a significant
component in the entire parsing process.

Amdahl’s law suggests a high ratio of parsing/decoding time
over XML scanning is needed to get reasonable speedups.
In our earlier work on designing a table driven parser [Zhang
and van Engelen 2006] (whose performance is shown in Fig-
ure 11), the breakdown in scanning, parsing, and deserializa-

tion overhead with TDX parsing is reported and compared to
other XML parsers. The analysis shows that scanning can be
three times slower than parsing. From Amdahl’s law we see
that 14% speedup can be gained with two threads, and 23%
with four threads.

An issue with SAX parsing is its inherent event-based pro-
cessing mode, as a result, parallel threads will not be help-
ful. It is possible to populate a DOM tree in parallel and gain
some speedup, however, the subsequent traversal of the tree
by a single thread will be slow. Another approach is to use
a read-ahead thread that caches portions of the file ahead of
the single-threaded parser.

To make effective use of multi-core architectures, we recom-
mend the following: (1) pre-scanning of the document, to
combine parsing with decoding, is essential to decide how
to subdivide tasks to the parser threads; (2) random access
should be added as a feature in XML documents (e.g. via at-
tributes at the top level element) to aid in avoiding the cost
of sequential scanning to determine starting point for each
thread; (3) schema developers should specify a set of guide-
lines for processing instructions, in the XML document it-
self, to enable high performance processing under multiple
threads.

7 Related Work

Several general XML benchmarking programs exist [Chilin-
garyan 2003; DevSphere 2000]. The XML Bench-
mark [Chilingaryan 2003] tests a number of parsers against
arbitrary XML documents, but it does not provide a set of
sample input files important for grid applications. The XML
Parsing Benchmark [DevSphere 2000] tests only two differ-
ent Java-based parsers, and again is not tailored to the needs
of grid application developers.

The XMark project [Schmidt et al. 2001] has designed an
XML benchmark suite to examine the performance of XML
repositories, such as relational databases, for a wide range of
queries that are typical of real-world application scenarios.
This benchmark effectively compares different implementa-
tions of XML databases with queries that test specific prim-
itives of the query processor and storage attributes. Another
complementary effort is the SOAPFix [Kohlhoff and Steele
2004] project that studies applicability of SOAP for realistic
business computing with data obtained from the Australian
Stock Exchange.

To test the interoperability of various SOAP toolkits, the
SOAP community uses a set compliant payloads for an
“echo” operation of primitives, arrays of primitives, and
structs [XMethods.com 2001]. Our new benchmark suite
complements this effort, as it includes some of these pay-
loads to test the performance, along with the compliance to

standards. Our benchmark suite also includes many grid spe-
cific feature and application payloads.

Previously, we also developed a SOAP benchmark for grid
services ourselves [Head et al. 2005]. Our new suite focuses
specifically on the parsing component that applications em-
bed, rather than the entire SOAP serialization infrastructure
provided by SOAP toolkits.

8 Conclusions and Future Work

A critical component that is missing in the Grid Web ser-
vices landscape is the lack of fundamental metrics and
micro-benchmarks for Web services based grid middleware
that can provide insights on performance limitations, bottle-
necks, and opportunities for optimizations. The main thrust
of this paper is the development of a comprehensive set
of well-designed feature- and application-based benchmarks
for Grid Web services. This framework will help evaluate
and provide a road-map for the evolution of the architecture
and design of grid middleware. It will also provide insights
to various performance aspects of Web services based grid
middleware and facilitate in its adoption by a wider scien-
tific community. In the near future we plan to evaluate the
performance of the emerging Axis2 toolkit for C++ and the
role of XML toolkits for memory constrained applications
such as hand-held and embedded devices.

References

ABU-GHAZALEH, N., GOVINDARAJU, M., AND LEWIS,
M. J. 2004. Optimizing performance of web services with
chunk-overlaying and pipelined-send. Proceedings of the
International Conference on Internet Computing (ICIC)
(June), 482–485.

ABU-GHAZALEH, N., LEWIS, M. J., AND GOVINDARAJU,
M. 2004. Differential serialization for optimized soap
performance. Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-13) (June), 55–64.

ABU-GHAZALEH, N., LEWIS, M. J., AND GOVINDARAJU,
M. 2004. Performance of Dynamic Resizing of Message
Fields for Differential Serialization of SOAP Messages.
Proceedings of the International Symposium on Web Ser-
vices and Applications (June), 783–789.

AXIS JAVA, 2002. The Apache Project.
http://ws.apache.org/axis/.

BAILEY, D., BARSZCZ, E., BARTON, J., BROWNING, D.,
CARTER, R., DAGUM, L., FATOOHI, R., FINEBERG,
S., FREDERICKSON, P., LASINSKI, T., SCHREIBER,

R., SIMON, H., VENKATAKRISHNAN, V., AND WEER-
ATUNGA, S., 1994. The NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

BARRON, E. J., BATTISTI, D. S., BOVILLE, B. A.,
BRYAN, K., CARRIER, G. F., CESS, R. D., DAVIS,
R. E., GHIL, M., HALL, M. M., KARL, T. R.,
KIEHL, J. T., MARTINSON, D. G., PARKINSON, C. L.,
SALTZMAN, B., AND TURCO, R. P. 1994. Global
ocean-atmosphere- land system (GOALS) for predicting
seasonal-to-interannual climate. National Academy Press,
Washington, D.C.

BERMAN, F., FOX, G., AND HEY, T. 2003. Grid Comput-
ing: Making the Global Infrastructure a Reality. Wiley.

CHILINGARYAN, S. A., 2003. XML benchmark.
http://xmlbench.sourceforge.net/.

CHIU, K., GOVINDARAJU, M., AND BRAMLEY, R. 2002.
Investigating the Limits of SOAP Performance for Scien-
tific Computing. In Proceedings of 11th IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting, 246–254.

CHRISTENSEN, E., CURBERA, F., MEREDITH,
G., AND WEERAWARANA, S., 2001. Web Ser-
vices Description Language (WSDL) 1.1, March.
http://www.w3.org/TR/wsdl.

CHUN, G., DAIL, H., CASANOVA, H., AND SNAVEL, A.
2004. Benchmark probes for grid assessmen. In In Pro-
ceedings of the High-Performance Grid Computing Work-
shop.

CLARK, J., 1998. The expat xml parser.
http://expat.sourceforge.net/.

DEVSPHERE, 2000. The XML parsing benchmark.
http://www.devsphere.com/xml/benchmark/.

FOSTER, I., AND KESSELMAN, C. 1998. The GRID:
Blueprint for a New Computing Infrastructure. Morgan-
Kaufmann.

FOSTER, I., KISHIMOTO, H., SAVVA, A., BERRY, D.,
DJAOUI, A., GRIMSHAW, A., HORN, B., MACIEL,
F., SIEBENLIST, F., SUBRAMANIAM, R., TREADWELL,
J., AND REICH, J. V. 2005. The open grid ser-
vices architecture, version 1.0. Global Grid Forum
(January). http://www.gridforum.org/documents/GWD-I-
E/GFD-I.030.pdf.

FRUMKIN, M., AND WIJNGAART, R. F. V. D. 2002. Nas
grid benchmarks: A tool for grid space exploration. Clus-
ter Computing 5, 3.

GANNON, D., KRISHNAN, S., FANG, L., KANDASWAMY,
G., SIMMHAN, Y., , AND SLOMINSKI, A. 2004. On
building parallel and grid applications: Component tech-
nology and distributed services. In CLADE 2004, Chal-

lenges of Large Applications in Distributed Environments.
IEEE Computer Society Press.

GLOBUS TOOLKIT, 2002. Globus Alliance. http://www-
unix.globus.org/toolkit/downloads/.

GOVINDARAJU, M., SLOMINSKI, A., CHOPPELLA, V.,
BRAMLEY, R., AND GANNON, D. 2000. Requirements
for and Evaluation of RMI Protocols for Scientific Com-
puting. In Proceedings of SuperComputing 2000.

GOVINDARAJU, M., LEWIS, M., CHIU, K., ENGELEN, R.,
LANG, S., AND JACKSON, K. 2005. Web services per-
formance aspects. In The Proceedings of GlobusWorld.

GUDGIN, M., HADLEY, M., MENDELSOHN, N.,
MOREAU, J.-J., CANON, AND NIELSEN, H. F.,
2003. Simple object access protocol 1.1, June.
http://www.w3.org/TR/SOAP.

HAPMAP, 2003. International HapMap Project.
http://www.hapmap.org/abouthapmap.html.

HAUSTEIN, S., 2000. kxml pull parser, July.
http://kxml.sourceforge.net/.

HEAD, M. R., GOVINDARAJU, M., SLOMINSKI, A., LIU,
P., ABU-GHAZALEH, N., VAN ENGELEN, R., CHIU,
K., AND LEWIS, M. J. 2005. A benchmark suite
for soap-based communication in grid web services. In
SC—05 (Supercomputing): International Conference for
High Performance Computing, Networking, and Storage.
http://grid.cs.binghamton.edu/projects/soap bench/.

HEY, T., AND LANCASTER, D. 2000. The Development
of ParkBench and Performance Prediction. In the Interna-
tional Journal of High Performance Computing Applica-
tions 14, 3, 205–215.

HUANG, Y., SLOMINSKI, A., HERATH, C., AND
GANNON, D. 2006. Ws-messenger: A web
services based messaging system for service-oriented
grid computing. In 6th IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid06).
http://www.extreme.indiana.edu/xgws/messenger/.

HUMPHREY, M., AND WASSON, G. 2005. Architectural
foundations of wsrf.net. International Journal of Web Ser-
vices Research 2, 2 (April-June), 83–97.

ILLINCA, F., HETU, J.-F., AND BRAMLEY, R., 1997. Sim-
ulation of 3-d mold-filling and solidification processes
on distributed memory parallel architectures, Novem-
ber. Proceedings of International Mechanical Engineering
Congress & Exposition.

KEPLER, 2003. The Kepler Project. http://www.kepler-
project.org/.

KOHLHOFF, C., AND STEELE, R. 2004. Evaluating SOAP
for High Performance Applications in Capital Markets.

Journal of Computer Systems, Science, and Engineering
63, 4 (July), (241–251).

KRISHNAN, S., BALDRIDGE, K., GREENBERG, J.,
STEARN, B., AND BHATIA, K. 2005. An end-to-end web
services-based infrastructure for biomedical applications.
In In Grid 2005, 6th IEEE/ACM International Workshop
on Grid Computing.

LEAD EVENTS, 2003. Indiana Uni-
versity Extreme Computing Laboratory.
http://www.extreme.indiana.edu/xgws/messenger/.

LUSZCZEK, P., DONGARRA, J., KOESTER, D., RABEN-
SEIFNER, R., LUCAS, B., KEPNER, J., MCCALPIN,
J., BAILEY, D., AND TAKAHASHI, D., 2005. Intro-
duction to the HPC Challenge Benchmark Suite, March.
http://icl.cs.utk.edu/hpcc/pubs/index.htm.

MCCALPIN, J. D., 1997. STREAM: Sustainable Mem-
ory Bandwidth in High Performance Computers, June.
http://www.cs.virginia.edu/stream.

NAGARATNAM, N., AND HUMPHREY, M., 2003. Open
grid service architecture security working group (ogsa-
sec-wg). http://www.cs.virginia.edu/ humphrey/ogsa-sec-
wg/.

OREN, Y., 2002. Piccolo XML Parser for Java, March.
http://piccolo.sourceforge.net/.

PETITET, A., WHALEY, R. C., DONGARRA, J., AND
CLEAR, A. 2004. Hpl - a portable implemen-
tation of the high-performance linpack benchmark for
distributed-memory computers. Tech. rep., Innova-
tive Computing Lab, University of Tennessee, January.
http://www.netlib.org/benchmark/hpl/.

SCHMIDT, A. R., WAAS, F., KERSTEN, M. L., D. FLO-
RESCU, I. M., CAREY, M. J., AND BUSSE, R. 2001.
The xml benchmark project. Tech. rep., Technical Report
INS-R0103, CWI, Amsterdam, The Netherlands, April.

SINGH, G., BHARATHI, S., CHERVENAK, A., DEELMAN,
E., KESSELMAN, C., MAHOHAR, M., PAIL, S., AND
PEARLMAN, L. 2003. A metadata catalog service for
data intensive applications. Proceedings of Supercomput-
ing (November).

SLOMINSKI, A., GOVINDARAJU, M., GANNON, D., AND
BRAMLEY, R. 2001. Design of an XML based Interopera-
ble RMI System : SoapRMI C++/Java 1.1. In Proceedings
of PDPTA, 1661–1667.

SLOMINSKI, A., 2004. XSOAP Toolkit.
http://www.extreme.indiana.edu/xgws/.

SLOMINSKI, A., 2005. Scientific workflows survey.
http://www.extreme.indiana.edu/swf-survey/.

SOAPWARE.ORG, 2001. The Leading Di-
rectory for SOAP 1.1 Developers, May.
http://www.soapware.org/directory/4/implementations.

SPEC, 1992. The SPEC Benchmarks.
http://www.specbench.org.

TROLLTECH, 1998. Qt C++ Applica-
tion Development Framework, October.
http://www.trolltech.com/products/qt/.

VAN ENGELEN, R. A., AND GALLIVAN, K. 2002. The
gsoap toolkit for web services and peer-to-peer comput-
ing networks. In The Proceedings of the 2nd IEEE Inter-
national Symposium on Cluster Computing and the Grid
(CCGrid2002), 128–135.

VAN ENGELEN, R., ZHANG, W., AND GOVINDARAJU, M.
2006. Toward remote object coherence with compiled ob-
ject serialization for distributed computing with xml web
services. In in the proceedings of Compilers for Parallel
Computing (CPC), 441–455.

VAN ENGELEN, R. 2003. Pushing the SOAP envelope with
Web services for scientific computing. In proceedings
of the International Conference on Web Services (ICWS),
346–352.

VAN ENGELEN, R. 2004. Code generation techniques for
developing light-weight efficient XML Web services for
embedded devices. In proceedings of 9th ACM Symposium
on Applied Computing SAC 2004.

VAN ENGELEN, R., 2004. Constructing finite state automata
for high performance xml web services.

VEILLARD, D., 1998. The XML C Parser and toolkit of
Gnome, February. http://xmlsoft.org/.

W3C. Canonical XML. http://www.w3.org/TR/xml-c14n.

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND
GUPTA, A. 1995. The SPLASH 2 Programs: Character-
ization and Methodological Considerations. In Proceed-
ings of the 22nd International Symposium on Computer
Architecture (June).

WSRF, 2004. Web services resource framework 1.2, De-
cember. http://www.oasis-open.org/committees/wsrf/.

XERCES, 2003. Xerces XML Parser, September.
http://xerces.apache.org/.

XMETHODS.COM, 2001. SOAPBuilders Interoperability
Lab. http://www.xmethods.com/ilab/ .

ZHANG, W., AND VAN ENGELEN, R. 2006. TDX: a high-
performance table-driven xml parser. In The Proceedings
of the ACM SouthEast Conference, 726–731.

ZHANG, J., 2003. Virtual Token Descriptor (VTD) XML
Parser. http://vtd-xml.sourceforge.net/.

