
Securing Systems by Threat Mitigation and Adaptive Live Patching

Yue Chen
http://YueChen.me

CIS 5935 Introductory Seminar on Research

http://yuechen.me/

Outline

• Hack your PC

• Hack your phone

• Hack your server

And how to protect them…

 and win cash.

2

Hack your PC
physically

Disk Encrypted Stole a PC

Screen Locked

Has a Bitcoin wallet inside

with the BTC amount that can buy two pizzas on

May 22, 2010

Cold Boot Attack

6

Freeze the memory

Cold Boot Attack

7

Transplant the memory

Cold Boot Attack

8

Extract the disk decryption key
from the memory

Decrypt the disk

Get the Bitcoins

Protect your PC
technically

Cold Boot Attack – Protection

• Sensitive memory content in plaintext can be extracted easily

Memory

“Secret Message”

Cold Boot Attack – Protection

• Sensitive memory content in plaintext can be extracted easily

Memory

“Secret Message”

“Secret Message”

Our Solution – EncExec

• Sensitive memory content cannot be read with encryption

Memory

“XXXXXXXXXXXX”

Our Solution – EncExec

• Sensitive memory content cannot be read with encryption

Memory

“XXXXXXXXXXXX”

? ? ?

EncExec – Overview

• Data in memory always encrypted

• Decrypted into the cache only when accessed

• Use reserved cache as a window over protected data

– Use L3 (instead of L1 or L2) cache to minimize performance impact

15

EncExec – Overview

• Decrypted data will never be evicted to memory (no cache conflict)

– Extend kernel’s virtual memory management to strictly control access

– Only data in the window are mapped in the address space

– If more data than window size -> page replacement

16

Design: Key Techniques

• Spatial cache reservation

– Reserves a small part of the L3 cache for its use

• Secure in-cache execution

– Data encrypted in memory, plaintext view only in cache

CPU Cache

Intel Core i7 4790 cache architecture

CPU Cache

2-way set-associative cache, 8 cache lines in 4 sets. Each cache line has 16 bytes.

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

: Needs to be reserved

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

: Needs to be reserved

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

: Needs to be reserved

Design: Secure In-Cache Execution

Desynchronize memory (encrypted) and cache (plaintext)

• Cache in write-back mode

– Guaranteed by hardware and existing kernels (in most OS’es)

• L3 cache is inclusive of L1 and L2 caches

– Guaranteed by hardware and existing kernels

• No conflict in the reserved cache

– No more protected data at a time than the reserved cache size

Design: Secure In-Cache Execution

More data to protect?

• Demand paging

– Access unmapped data -> page fault

– Allocate a plaintext page (for securing data)

– If no page available, select one for replacement

• Encrypt the plaintext page, copy it back

• Decrypt faulting page into plaintext, update page table if necessary

Performance Evaluation

Overhead of common cryptographic algorithms

Mode 1: Choose data to encrypt
Mode 2: Encrypt all the data

Test with 15 or 31 plaintext pages

Performance Evaluation

Overhead of RSA and DH handshakes

Mode 1: Choose data to encrypt
Mode 2: Encrypt all the data

Test with 15 or 31 plaintext pages

Hack Protect your phone

Problem

• Dogspectus ransomware reported on April 2016

• It contains the code for the futex or Towelroot exploit that was first
disclosed at the end of 2014

Problem

• Ghost Push malware still a major threat in October 2016

• Over 600,000 Android user affected per day

• Affected 14,847 phone types and 3,658 brands

• Known to use VROOT (CVE-2013-6282) and Towelroot (CVE-2014-3153)

Why?

Exploits made public but not reported

Exploits disclosed but not timely patched

Note that this patch was not applied to all msm branches at the time of
the patch release (July 2015) and no security bulletin was issued, so the
majority of Android kernels based on 3.4 or 3.10 are still affected despite
the patch being available for 6 months.

https://bugs.chromium.org/p/project-zero/issues/detail?id=734

Exploits patched but delayed by carriers

It’s each carrier’s job to test all the different updates for all their
different smartphones, and they may take many months to do so.
They may even decline to do the work and never release the update.

https://www.howtogeek.com/163958/why-do-carriers-delay-updates-for-android-but-not-iphone

Monthly disclosed number of Android kernel vulnerabilities

PoC exploits are publicly disclosed

39

40

41

Let’s Start from the Kernel

42

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Let’s Start from the Kernel

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Let’s Start from the Kernel

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Challenges

• Officially patching an Android device is a long process  Third-party

• Delayed/non-existing kernel source code  Binary-based

5

Challenges

• Severely fragmented Android ecosystem  Adaptive

6

http://d.ibtimes.co.uk/en/full/1395443/android-fragmentation-2014.png

Solution

Third-party Binary-based Adaptive Kernel Live Patching

7

Key requirements:

• Adaptiveness

– It should be adaptive to various device kernels

• Safety

– Patches should be easy to audit

– Their behaviors must be technically confined

• Timeliness

– Response time should be short, after disclosed vulnerability or exploit

• Performance

– The solution should not incur non-trivial performance overhead

Feasibility Study: Dataset

• Studied 1139 Android kernels

8

• Most kernel functions are stable across devices and Android
releases

• Most vulnerabilities triggered by malicious inputs

• Many functions return error codes
– Return a pointer  ERR_PTR

Feasibility Study: Observations

9

• Most kernel functions are stable across devices and Android
releases

• Most vulnerabilities triggered by malicious inputs

• Many functions return error codes
– Return a pointer  ERR_PTR

Gracefully return

Feasibility Study: Observations

9

Filter them

Overall Approach: Input Validation

10

KARMA

KARMA: Kernel Adaptive Repair for Many Androids

 Adaptive – Automatically adapt to various device kernels

 Memory-safe – Protect kernel from malicious (misused) patches

 Multi-level – Flexible for different vulnerabilities

11

KARMA Design: Safety

• Patches are written in Lua, confined by Lua VM at runtime

• A patch can only be placed at designated locations

• Patched functions must return error codes or void
– Use existing error handling to recover from attacks

• A patch can read but not write the kernel memory
– Confined by KARMA APIs

– Prevent malicious (misused) patches from changing the kernel

– Prevent information leakage

12

KARMA Patch Example

Part of the official patch of CVE-2014-3153 (Towelroot)

14

KARMA Patch Example

15

-EINVAL

More complex examples in the paper

KARMA API

16

KARMA API

Available to patches

16

KARMA Architecture

17

Offline Patch Generation and Verification

Online Live Patching by KARMA Client

Offline Patch Adaptation

Patch A

18

Offline Patch Adaptation

Three steps:

1. Identify the vulnerable functions in the target kernel
– Same function but different names

– Inlined

2. Check if the reference patch works for the target kernel
– Same function but different semantics

3. Adapt the reference patch for the target kernel

19

Vulnerable Function Identification Example
CVE-2015-3636 (PingPong Root)

Device A: ping_unhash Device B: ping_v4_unhash

Func_A Func_B Func_C

Func_D Func_E

ping_unhash

Func_A Func_B Func_C

Func_D Func_E

ping_v4_unhash

20

Call graph based similarity comparison

Semantic Matching

• Check if two functions are semantically equivalent

• If so, adapt the reference patch to the target kernel

• Syntactic matching is too strict
– Different compilers can generate different code with same semantics

• Instruction order, register allocation, instruction selection, code layout

21

Semantic Matching

Same semantics with different syntax 22

Semantic Matching

• Check if two functions are semantically equivalent

• If so, adapt the reference patch to the target kernel

• Syntactic matching is too strict
– Different compilers can generate different code with same semantics

• Instruction order, register allocation, instruction selection, code layout

• Use symbolic execution to abstract these differences and
adapt patches
– Use approximation to improve scalability (details in the paper)

23

Online Patch Application

24

Function entry point hooking

Prototype Implementation

• Lua engine in kernel (11K SLOC)
– Simple

– Memory-safe

– Easy to embed and extend

– 24 years of development

• Semantic matching
– angr

25

Evaluation: Applicability

• Evaluated 76 critical vulnerabilities in the last three years

26

Evaluation: Adaptability

27

Evaluation: Adaptability

Types and frequencies of instruction opcodes

27

Evaluation: Adaptability

Number of function calls and conditional branches (to abstract CFG)

27

Evaluation: Adaptability

KARMA’s semantic matching

27

Evaluation: Performance

CF-Bench results with different patches

28

Hack your server
remotely

74

Attackers have limited information

Attack Example: Stack Overflow

75

Typical Attack Procedure to Take Over the Whole System

76

Find (memory) vulnerabilities

Exploit them

Run your own code

Data Execution Prevention (DEP)

• Previously, attackers inject their own stuff into the process,
and run it

• Currently, Data Execution Prevention (DEP) is widely deployed.

• You cannot run what you inject

77

Code Reuse Attack

Example: Return-Oriented Programming

78

Existing Code

Chained Gadgets

Protect your server
magically

Code Reuse Attack

• Need to know the code location
– Guess the code locations (repeatedly)

• Protect?
– Make the code locations unpredictable

80

Remix: On-demand Live Randomization

81

Win cash
decently

References

• Protect your PC
– Secure In-Cache Execution

• Protect your phone
– Adaptive Android Kernel Live Patching

• Protect your server
– Remix: On-demand Live Randomization

84

Thank you
http://YueChen.me

http://yuechen.me/

