20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017)

Secure In-Cache Execution

Yue Chen, Mustakimur Khandaker, Zhi Wang
Florida State University

Cold Boot Attack

* Dump memory by freezing and transplanting
e Steal sensitive information

Cold Boot Attack

e Sensitive memory content in plaintext

Memory
“Secret Message”

Cold Boot Attack

e Sensitive memory content in plaintext

“Secret Message”

Memory
“Secret Message”

Our Solution

* Sensitive memory content cannot be read with encryption

T ——
Memory

“UXXXXXXXXXXX”

Our Solution

* Sensitive memory content cannot be read with encryption

27?7

e ——
Memory

OXXXXXXXXXXXX”

EncExec: Design Goals

* Data secrecy

— Plaintext view only in cache; key protected as well
* Performance isolation

— Performance impact isolated from other processes

* Application transparency

— User program unmodified to run under EncExec

Threat Model

* Able to perform cold boot attacks
 No malware installed (e.g., kernel rootkit)

* Typical use scenario:

— Laptops lost in public places, even protected by encrypted hard disks
and screen locks

Design Overview

* Data in memory always encrypted; decrypted into the L3 cache only when
accessed
* Use reserved cache as a window over protected data
— Use L3 (instead of L1 or L2) cache to minimize performance impact

EncExec'ed Process

(Encrypted) Protected Data Unprotected Data Code

I ——— —— |

aoeds 1asn

\\
|
EIEN

Page Table

yd / \
/ / \ L3 Cache

I | | [o= | CPU
Plaintext Data & Key

alempleH

Design Overview

Decrypted data will never be evicted to memory (no cache conflict)
— Extend kernel’s virtual memory management to strictly control access
— Only data in the window are mapped in the address space
— If more data than window size -> page replacement

EncExec'ed Process

(Encrypted) Protected Data Unprotected Data Code

| |]

Page Table

yd / \
/ / \ L3 Cache

| | | o= | CPU

Plaintext Data & Key

[BuIaH aoeds Jasn

alempleH

Design Overview

Two modes:

1. Given a block of secure memory for storing critical data
— Need to (slightly) modify the program

2. Usereserved cache to protect all the data of the process

— Use the reserved cache as a moving window

Design: Key Techniques

e Spatial cache reservation

— Reserves a small part of the L3 cache for its use

e Secure in-cache execution

— Data encrypted in memory, plaintext view only in cache

CPU Cache

Core 1l Core 2 Core 3 Core 4
L1 DL1 L1 DL1 L1 DL1 L1 DL1
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L3 (8MB, inclusive)

Intel Core i7 4790 cache architecture

CPU Cache

Memory Address (16bits)

Ta line O
[Tag | set | Offset| Tag Data -
10 21 4

set
N

equal?

Cache

2-way set-associative cache, 8 cache lines in 4 sets. Each cache line has 16 bytes.

Challenges: Spatial Cache Reservation

* Fine-grained cache control

— x86 transparently manages cache assignment and replacement

e Countermeasures:
— Rule 1

* Protected data are only cached by the reserved cache
* No other memory is cached by the reserved cache

— Rule 2:

» Accessible (decrypted) protected data is less than the reserved cache size

— Thus, reserved cache content will not be evicted

Design: Spatial Cache Reservation

Use page table to control reserved memory usage

Page table can only map page-sized and page-alighed memory
Reserve at least a whole page on the L3 cache
Reserve a smallest page of the cache (4KB)

— How much space in total we need to reserve?

Design: Spatial Cache Reservation

Cache

gt p— —— \——

Set0 Setl Set2 Set3

O0JO4JO8OCHLO14181CR2024282C 30343 83C4044)48)4cC

Memory

Design: Spatial Cache Reservation

Cache

gt p— —— \——

Set0 Setl Set2 Set3

D: Needs to be reserved

O4§0SJOCHLIOQ1 418 1CR20024)282C303438)3Cp404448)4cC

Memory

Design: Spatial Cache Reservation

Cache

SetQ Setl

gt p— —— \——

Set2 Set3

D: Needs to be reserved

04§08

0C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40Q44p48p4cC

Memory

Design: Spatial Cache Reservation

Cache

SetQ Setl

04§08

Memory

|HH||HHIHHH||%HEHHHHHH
gt p— —— \——

Set2 Set3

OCH10p14§18

1CH20)24Q28

2CY30434Q38

D: Needs to be reserved

3C

4484834C

Example: Spatial Cache Reservation

Intel Core-i7 4790 L3 cache

— 16-way set-associative; physically indexed and physically tagged
— Cache line size: 64 bytes = 2° bytes (offset field: 6 bits)

— Cache size: 8 MB

Set number: 8M/(64*16) = 8192 = 213 (set field: 13 bits)

If machine has 16GB (234) of physical memory, tag field has
15 bits (34— 6 - 13 = 15).

Tag Set Offset
1
XXXXXXXXXXXXXXX [[1111111 i XXXXXX || XXX XXX

Example: Spatial Cache Reservation

Reserve one page (4KB)
64 cache lines in one page

Tag

Set

Offset

XXXXKXXXXXXXXXXX

1111111§xxxxxx

XXXXXX

— Page_size/cache_line_size = 4K/64 = 64

Need to reserve 64 cache sets

N

—

4KB (12bits)

— All the cache lines in the same set reserved together (16-way)

Reserve 64KB cache in total

— 64 (set number) * 16 (associativity ways) * 64B (cache line size) = 64KB

Example: Spatial Cache Reservation

Reserve 1/128 of the physical memory
— 64 (reserved sets) / 8192 (total) = 1/128

Reserve one physical page for every 128 pages

If RAM is 16GB, the total reserved memory is:
— 16GB * 1/128 = 128MB

Ensure no cache eviction:
— Can use 64KB (16 pages) at a time of the 128MB
— Name these 16 pages as plaintext pages

— Protected data can be larger than 64KB as we use demand paging

Design: Secure In-Cache Execution

Desynchronize memory (encrypted) and cache (plaintext)

e (Cache in write-back mode

— Guaranteed by hardware and existing kernels (in most OS’es)

e L3 cacheisinclusive of L1 and L2 caches

— Guaranteed by hardware and existing kernels

e No conflict in the reserved cache

— No more protected data at a time than the reserved cache size

Design: Secure In-Cache Execution

More data to protect?

* Demand paging
— Access unmapped data -> page fault
— Allocate a plaintext page (for securing data)

— If no page available, select one for replacement
* Encrypt the plaintext page, copy it back
* Decrypt faulting page into plaintext, update page table if necessary

Design: Secure In-Cache Execution

* Dedicate one plaintext page to store keys and sub-keys

— Cannot be evicted or replaced

* Frequent protected data encryption/decryption
— Use CPU built-in support to speed up cryptographic algorithms

Implementation: Spatial Cache Reservation

Reserve physical pages in the booting process

— Modify allocators to skip reserved pages
Make sure no reserved pages exist in page table

Hook run-time page allocator and kernel’s whole-cache
flushing function

Implementation: Secure In-Cache Execution

 pmap is used to unmap a page

— Consist of architecture-specific data and functions to manage the
process’ page table

— Maintain a reverse mapping for physical pages

— Track page usage information for page replacement

 Remove shared protected pages from other processes

Performance Evaluation

e Use the hardware-accelerated AES (AES-NI) to encrypt and
decrypt data

* About 3us on average to encrypt/decrypt 4KB data using 128-
bit AES algorithm

— 6us to replace an existing page

Performance Evaluation

Relative performance overhead

100%

80%

60%

40%

20%

0%

M Mode 2/ 15 Pages|
] Mode 2/ 31 Pages
W Mode 1

| | | | | | | s |
S 3, C 8, C
4405 A/,q\ OgS 4@.5‘\ 4/1,, . { o) "’f//\\ 7 ® 5 Afﬂﬁq o
=) 044\2 Ly Sty &7 G Op S
6 GO\ C. ~ SA’

Overhead of common cryptographic algorithms

Mode 1: Choose data to encrypt
Mode 2: Encrypt all the data

Test with 15 or 31 plaintext pages

Performance Evaluation

Relative performance overhead

100%

80%

60%

40%

20%

0%

B Mode2/15Pages| - ----------- -
[0 Mode 2/31 Pages
B Mode 1

Overhead of RSA and DH handshakes

Mode 1: Choose data to encrypt
Mode 2: Encrypt all the data

Test with 15 or 31 plaintext pages

Performance Evaluation

Throughput (MB/s; 1,000seeks/s)

6,000

5,000

4,000

3,000

2,000

1,000

B Single
---------------- O Concurrent | ----nooennaon

Sq Sg Se, Sg
QowO Qoo’@/ 90%9 9/,,0/]
/76 " Op, % @h’f}’-@ U

Se

Performance of Bonnie while concurrently running the
mbed TLS benchmark. The unit on the Y-axis is MB/sec
or thousand_seeks/sec (for RandomSeeks only).

Q&A

Secure In-Cache Execution

www.YueChen.me

http://www.yuechen.me/

Backup Slides

Compared to Intel SGX

 SGXis great!

* EncExec
— Works on old CPUs
— No time-consuming context switch
— Supports unmodified programs

