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Cold Boot Attack 

• Dump memory by freezing and transplanting 

• Steal sensitive information 
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EncExec: Design Goals 

• Data secrecy 
– Plaintext view only in cache; key protected as well 

• Performance isolation 
– Performance impact isolated from other processes 

• Application transparency 
– User program unmodified to run under EncExec 



Threat Model 

• Able to perform cold boot attacks 

• No malware installed (e.g., kernel rootkit) 

• Typical use scenario: 
– Laptops lost in public places, even protected by encrypted hard disks 

and screen locks 



Design Overview 

• Data in memory always encrypted; decrypted into the L3 cache only when 
accessed 

• Use reserved cache as a window over protected data 

– Use L3 (instead of L1 or L2) cache to minimize performance impact 

 



Design Overview 

• Decrypted data will never be evicted to memory (no cache conflict) 

– Extend kernel’s virtual memory management to strictly control access 

– Only data in the window are mapped in the address space 

– If more data than window size -> page replacement 



Design Overview 

Two modes: 
 

1. Given a block of secure memory for storing critical data 
– Need to (slightly) modify the program 

2. Use reserved cache to protect all the data of the process 
– Use the reserved cache as a moving window 

 



Design: Key Techniques 

• Spatial cache reservation 
– Reserves a small part of the L3 cache for its use 

• Secure in-cache execution 
– Data encrypted in memory, plaintext view only in cache 



CPU Cache  

Intel Core i7 4790 cache architecture 



CPU Cache  

2-way set-associative cache, 8 cache lines in 4 sets. Each cache line has 16 bytes. 



Challenges: Spatial Cache Reservation 

• Fine-grained cache control 
– x86 transparently manages cache assignment and replacement 
 

• Countermeasures: 
– Rule 1 

• Protected data are only cached by the reserved cache 

• No other memory is cached by the reserved cache 

– Rule 2:  

• Accessible (decrypted) protected data is less than the reserved cache size 

– Thus, reserved cache content will not be evicted 

 

 



Design: Spatial Cache Reservation 

• Use page table to control reserved memory usage 

• Page table can only map page-sized and page-aligned memory 

• Reserve at least a whole page on the L3 cache 

• Reserve a smallest page of the cache (4KB) 
– How much space in total we need to reserve? 
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Example: Spatial Cache Reservation 

• Intel Core-i7 4790 L3 cache 
– 16-way set-associative; physically indexed and physically tagged 

– Cache line size: 64 bytes = 26 bytes (offset field: 6 bits) 

– Cache size: 8 MB 

• Set number: 8M/(64*16) = 8192 = 213 (set field: 13 bits) 

• If machine has 16GB (234) of physical memory, tag field has 
15 bits (34 – 6 - 13 = 15). 

 



Example: Spatial Cache Reservation 

• Reserve one page (4KB) 

• 64 cache lines in one page 
– Page_size/cache_line_size = 4K/64 = 64 

• Need to reserve 64 cache sets 
– All the cache lines in the same set reserved together (16-way) 

• Reserve 64KB cache in total 
– 64 (set number) * 16 (associativity ways) * 64B (cache line size) = 64KB 



Example: Spatial Cache Reservation 

• Reserve 1/128 of the physical memory 
– 64 (reserved sets) / 8192 (total) = 1/128 

• Reserve one physical page for every 128 pages 

• If RAM is 16GB, the total reserved memory is: 
– 16GB * 1/128 = 128MB 

• Ensure no cache eviction: 
– Can use 64KB (16 pages) at a time of the 128MB 

– Name these 16 pages as plaintext pages 

– Protected data can be larger than 64KB as we use demand paging 

 



Design: Secure In-Cache Execution 

Desynchronize memory (encrypted) and cache (plaintext) 
 

• Cache in write-back mode 
– Guaranteed by hardware and existing kernels (in most OS’es) 

• L3 cache is inclusive of L1 and L2 caches 
– Guaranteed by hardware and existing kernels 

• No conflict in the reserved cache 
– No more protected data at a time than the reserved cache size 

 



Design: Secure In-Cache Execution 

More data to protect? 
 

• Demand paging 
– Access unmapped data -> page fault 

– Allocate a plaintext page (for securing data) 

– If no page available, select one for replacement 

• Encrypt the plaintext page, copy it back 

• Decrypt faulting page into plaintext, update page table if necessary 

 



Design: Secure In-Cache Execution 

• Dedicate one plaintext page to store keys and sub-keys 
– Cannot be evicted or replaced 

 

• Frequent protected data encryption/decryption 
– Use CPU built-in support to speed up cryptographic algorithms 



Implementation: Spatial Cache Reservation 

• Reserve physical pages in the booting process 
– Modify allocators to skip reserved pages 

• Make sure no reserved pages exist in page table 

• Hook run-time page allocator and kernel’s whole-cache 
flushing function 



Implementation: Secure In-Cache Execution 

• pmap is used to unmap a page 
– Consist of architecture-specific data and functions to manage the 

process’ page table 

– Maintain a reverse mapping for physical pages 

– Track page usage information for page replacement 

• Remove shared protected pages from other processes 
 



Performance Evaluation 

• Use the hardware-accelerated AES (AES-NI) to encrypt and 
decrypt data 

• About 3μs on average to encrypt/decrypt 4KB data using 128-
bit AES algorithm 
– 6μs to replace an existing page 



Performance Evaluation 

Overhead of common cryptographic algorithms 

Mode 1: Choose data to encrypt 
Mode 2: Encrypt all the data 
 
Test with 15 or 31 plaintext pages 



Performance Evaluation 

Overhead of RSA and DH handshakes 

Mode 1: Choose data to encrypt 
Mode 2: Encrypt all the data 
 
Test with 15 or 31 plaintext pages 



Performance Evaluation 

Performance of Bonnie while concurrently running the 
mbed TLS benchmark. The unit on the Y-axis is MB/sec 
or thousand_seeks/sec (for RandomSeeks only). 
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Compared to Intel SGX 

• SGX is great! 

• EncExec 
– Works on old CPUs 

– No time-consuming context switch 

– Supports unmodified programs 


