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Cold Boot Attack

* Dump memory by freezing and transplanting
e Steal sensitive information




Cold Boot Attack

e Sensitive memory content in plaintext
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Our Solution

* Sensitive memory content cannot be read with encryption
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Our Solution

* Sensitive memory content cannot be read with encryption
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EncExec: Design Goals

* Data secrecy

— Plaintext view only in cache; key protected as well
* Performance isolation

— Performance impact isolated from other processes

* Application transparency

— User program unmodified to run under EncExec



Threat Model

* Able to perform cold boot attacks
 No malware installed (e.g., kernel rootkit)

* Typical use scenario:

— Laptops lost in public places, even protected by encrypted hard disks
and screen locks




Design Overview

* Data in memory always encrypted; decrypted into the L3 cache only when
accessed
* Use reserved cache as a window over protected data
— Use L3 (instead of L1 or L2) cache to minimize performance impact
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Design Overview

Decrypted data will never be evicted to memory (no cache conflict)
— Extend kernel’s virtual memory management to strictly control access
— Only data in the window are mapped in the address space
— If more data than window size -> page replacement
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Design Overview

Two modes:

1. Given a block of secure memory for storing critical data
— Need to (slightly) modify the program

2. Usereserved cache to protect all the data of the process

— Use the reserved cache as a moving window



Design: Key Techniques

e Spatial cache reservation

— Reserves a small part of the L3 cache for its use

e Secure in-cache execution

— Data encrypted in memory, plaintext view only in cache



CPU Cache

Core 1l Core 2 Core 3 Core 4
L1 DL1 L1 DL1 L1 DL1 L1 DL1
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L3 (8MB, inclusive)

Intel Core i7 4790 cache architecture




CPU Cache

Memory Address (16bits)
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Cache

2-way set-associative cache, 8 cache lines in 4 sets. Each cache line has 16 bytes.



Challenges: Spatial Cache Reservation

* Fine-grained cache control

— x86 transparently manages cache assignment and replacement

e Countermeasures:
— Rule 1

* Protected data are only cached by the reserved cache
* No other memory is cached by the reserved cache

— Rule 2:

» Accessible (decrypted) protected data is less than the reserved cache size

— Thus, reserved cache content will not be evicted



Design: Spatial Cache Reservation

Use page table to control reserved memory usage

Page table can only map page-sized and page-alighed memory
Reserve at least a whole page on the L3 cache
Reserve a smallest page of the cache (4KB)

— How much space in total we need to reserve?



Design: Spatial Cache Reservation
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Design: Spatial Cache Reservation
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Design: Spatial Cache Reservation
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Example: Spatial Cache Reservation

Intel Core-i7 4790 L3 cache

— 16-way set-associative; physically indexed and physically tagged
— Cache line size: 64 bytes = 2° bytes (offset field: 6 bits)

— Cache size: 8 MB

Set number: 8M/(64*16) = 8192 = 213 (set field: 13 bits)

If machine has 16GB (234) of physical memory, tag field has
15 bits (34— 6 - 13 = 15).

Tag Set Offset
1
XXXXXXXXXXXXXXX [[1111111 i XXXXXX || XXX XXX




Example: Spatial Cache Reservation

Reserve one page (4KB)
64 cache lines in one page

Tag

Set

Offset

XXXXKXXXXXXXXXXX

1111111§xxxxxx

XXXXXX

— Page_size/cache_line_size = 4K/64 = 64

Need to reserve 64 cache sets

N

—

4KB (12bits)

— All the cache lines in the same set reserved together (16-way)

Reserve 64KB cache in total

— 64 (set number) * 16 (associativity ways) * 64B (cache line size) = 64KB



Example: Spatial Cache Reservation

Reserve 1/128 of the physical memory
— 64 (reserved sets) / 8192 (total) = 1/128

Reserve one physical page for every 128 pages

If RAM is 16GB, the total reserved memory is:
— 16GB * 1/128 = 128MB

Ensure no cache eviction:
— Can use 64KB (16 pages) at a time of the 128MB
— Name these 16 pages as plaintext pages

— Protected data can be larger than 64KB as we use demand paging



Design: Secure In-Cache Execution

Desynchronize memory (encrypted) and cache (plaintext)

e (Cache in write-back mode

— Guaranteed by hardware and existing kernels (in most OS’es)

e L3 cacheisinclusive of L1 and L2 caches

— Guaranteed by hardware and existing kernels

e No conflict in the reserved cache

— No more protected data at a time than the reserved cache size



Design: Secure In-Cache Execution

More data to protect?

* Demand paging
— Access unmapped data -> page fault
— Allocate a plaintext page (for securing data)

— If no page available, select one for replacement
* Encrypt the plaintext page, copy it back
* Decrypt faulting page into plaintext, update page table if necessary



Design: Secure In-Cache Execution

* Dedicate one plaintext page to store keys and sub-keys

— Cannot be evicted or replaced

* Frequent protected data encryption/decryption
— Use CPU built-in support to speed up cryptographic algorithms



Implementation: Spatial Cache Reservation

Reserve physical pages in the booting process

— Modify allocators to skip reserved pages
Make sure no reserved pages exist in page table

Hook run-time page allocator and kernel’s whole-cache
flushing function



Implementation: Secure In-Cache Execution

 pmap is used to unmap a page

— Consist of architecture-specific data and functions to manage the
process’ page table

— Maintain a reverse mapping for physical pages

— Track page usage information for page replacement

 Remove shared protected pages from other processes



Performance Evaluation

e Use the hardware-accelerated AES (AES-NI) to encrypt and
decrypt data

* About 3us on average to encrypt/decrypt 4KB data using 128-
bit AES algorithm

— 6us to replace an existing page



Performance Evaluation

Relative performance overhead
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Performance Evaluation

Relative performance overhead
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Performance Evaluation

Throughput (MB/s; 1,000seeks/s)
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Q&A

Secure In-Cache Execution

www.YueChen.me
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Compared to Intel SGX

 SGXis great!

* EncExec
— Works on old CPUs
— No time-consuming context switch
— Supports unmodified programs



