
Secure In-Cache Execution

Yue Chen, Mustakimur Khandaker, Zhi Wang

Florida State University

20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017)

Cold Boot Attack

• Dump memory by freezing and transplanting

• Steal sensitive information

Cold Boot Attack

• Sensitive memory content in plaintext

Memory

“Secret Message”

Cold Boot Attack

• Sensitive memory content in plaintext

Memory

“Secret Message”

“Secret Message”

Our Solution

• Sensitive memory content cannot be read with encryption

Memory

“XXXXXXXXXXXX”

Our Solution

• Sensitive memory content cannot be read with encryption

Memory

“XXXXXXXXXXXX”

? ? ?

EncExec: Design Goals

• Data secrecy
– Plaintext view only in cache; key protected as well

• Performance isolation
– Performance impact isolated from other processes

• Application transparency
– User program unmodified to run under EncExec

Threat Model

• Able to perform cold boot attacks

• No malware installed (e.g., kernel rootkit)

• Typical use scenario:
– Laptops lost in public places, even protected by encrypted hard disks

and screen locks

Design Overview

• Data in memory always encrypted; decrypted into the L3 cache only when
accessed

• Use reserved cache as a window over protected data

– Use L3 (instead of L1 or L2) cache to minimize performance impact

Design Overview

• Decrypted data will never be evicted to memory (no cache conflict)

– Extend kernel’s virtual memory management to strictly control access

– Only data in the window are mapped in the address space

– If more data than window size -> page replacement

Design Overview

Two modes:

1. Given a block of secure memory for storing critical data
– Need to (slightly) modify the program

2. Use reserved cache to protect all the data of the process
– Use the reserved cache as a moving window

Design: Key Techniques

• Spatial cache reservation
– Reserves a small part of the L3 cache for its use

• Secure in-cache execution
– Data encrypted in memory, plaintext view only in cache

CPU Cache

Intel Core i7 4790 cache architecture

CPU Cache

2-way set-associative cache, 8 cache lines in 4 sets. Each cache line has 16 bytes.

Challenges: Spatial Cache Reservation

• Fine-grained cache control
– x86 transparently manages cache assignment and replacement

• Countermeasures:
– Rule 1

• Protected data are only cached by the reserved cache

• No other memory is cached by the reserved cache

– Rule 2:

• Accessible (decrypted) protected data is less than the reserved cache size

– Thus, reserved cache content will not be evicted

Design: Spatial Cache Reservation

• Use page table to control reserved memory usage

• Page table can only map page-sized and page-aligned memory

• Reserve at least a whole page on the L3 cache

• Reserve a smallest page of the cache (4KB)
– How much space in total we need to reserve?

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

: Needs to be reserved

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

: Needs to be reserved

Design: Spatial Cache Reservation

04 00 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

*4 *0 *8 *C

40 44 48 4C

Cache

Memory

*0 *4 *8 *C

Set 0 Set 1 Set 3 Set 2

: Needs to be reserved

Example: Spatial Cache Reservation

• Intel Core-i7 4790 L3 cache
– 16-way set-associative; physically indexed and physically tagged

– Cache line size: 64 bytes = 26 bytes (offset field: 6 bits)

– Cache size: 8 MB

• Set number: 8M/(64*16) = 8192 = 213 (set field: 13 bits)

• If machine has 16GB (234) of physical memory, tag field has
15 bits (34 – 6 - 13 = 15).

Example: Spatial Cache Reservation

• Reserve one page (4KB)

• 64 cache lines in one page
– Page_size/cache_line_size = 4K/64 = 64

• Need to reserve 64 cache sets
– All the cache lines in the same set reserved together (16-way)

• Reserve 64KB cache in total
– 64 (set number) * 16 (associativity ways) * 64B (cache line size) = 64KB

Example: Spatial Cache Reservation

• Reserve 1/128 of the physical memory
– 64 (reserved sets) / 8192 (total) = 1/128

• Reserve one physical page for every 128 pages

• If RAM is 16GB, the total reserved memory is:
– 16GB * 1/128 = 128MB

• Ensure no cache eviction:
– Can use 64KB (16 pages) at a time of the 128MB

– Name these 16 pages as plaintext pages

– Protected data can be larger than 64KB as we use demand paging

Design: Secure In-Cache Execution

Desynchronize memory (encrypted) and cache (plaintext)

• Cache in write-back mode
– Guaranteed by hardware and existing kernels (in most OS’es)

• L3 cache is inclusive of L1 and L2 caches
– Guaranteed by hardware and existing kernels

• No conflict in the reserved cache
– No more protected data at a time than the reserved cache size

Design: Secure In-Cache Execution

More data to protect?

• Demand paging
– Access unmapped data -> page fault

– Allocate a plaintext page (for securing data)

– If no page available, select one for replacement

• Encrypt the plaintext page, copy it back

• Decrypt faulting page into plaintext, update page table if necessary

Design: Secure In-Cache Execution

• Dedicate one plaintext page to store keys and sub-keys
– Cannot be evicted or replaced

• Frequent protected data encryption/decryption
– Use CPU built-in support to speed up cryptographic algorithms

Implementation: Spatial Cache Reservation

• Reserve physical pages in the booting process
– Modify allocators to skip reserved pages

• Make sure no reserved pages exist in page table

• Hook run-time page allocator and kernel’s whole-cache
flushing function

Implementation: Secure In-Cache Execution

• pmap is used to unmap a page
– Consist of architecture-specific data and functions to manage the

process’ page table

– Maintain a reverse mapping for physical pages

– Track page usage information for page replacement

• Remove shared protected pages from other processes

Performance Evaluation

• Use the hardware-accelerated AES (AES-NI) to encrypt and
decrypt data

• About 3μs on average to encrypt/decrypt 4KB data using 128-
bit AES algorithm
– 6μs to replace an existing page

Performance Evaluation

Overhead of common cryptographic algorithms

Mode 1: Choose data to encrypt
Mode 2: Encrypt all the data

Test with 15 or 31 plaintext pages

Performance Evaluation

Overhead of RSA and DH handshakes

Mode 1: Choose data to encrypt
Mode 2: Encrypt all the data

Test with 15 or 31 plaintext pages

Performance Evaluation

Performance of Bonnie while concurrently running the
mbed TLS benchmark. The unit on the Y-axis is MB/sec
or thousand_seeks/sec (for RandomSeeks only).

Secure In-Cache Execution

www.YueChen.me

Q & A

http://www.yuechen.me/

Backup Slides

Compared to Intel SGX

• SGX is great!

• EncExec
– Works on old CPUs

– No time-consuming context switch

– Supports unmodified programs

