Remix: On-demand Live Randomization

Basic Block Reordering: Control Flow:
g
6%
AbStra‘Ct Ux400d30: pushg %Srbhp
0x400d31: mowvg Srsp, Srbhp "E R /Z 2 ey [et e = -
Code randomization is an effective defense against code A £
reuse attacks. It scrambles program code to prevent ;e ii; E}igzi“%m-ﬁj =k] S 4l [-
attackers from locating useful functions or gadgets. The key = " [0x400d4f: leaq Oxd77e (3rip), Srdi =R N R DR U B DR o D)
to secure code randomization is to achieve high entropy. A o /| a8 =
. _ _ o~ /| 0x400d58: callqg 0x400ae0 L
practical approach to boost entropy is on-demand live o /. o 2% b bt -
. . e | .- e g
randomization that works on running processes. However, o / |Ux200dee: Jmpg Oxd4D00d/c C
] _] .]]]] m { 0x400dék: nopl 8 (%rax, %rax))—l BE3 I x 1% —1 -1 -1 [~ """+ -+ - [~ —
enabling live randomization is challenging since it often { | [0=400a70: movi 50, -4 (arhp) |- ¢
requires manual efforts to solve ambiguity in identifying i | 0=400d77: mopl B(%rax, %rax) ™\ Y 0% ——— L= o e 2 s
. . i E Ux400d7c: movl —-4(%rbp), %eax BB % e o4 Y, 2, *‘?5? o, Yo Y 2, %2, % %,
function pointers P 2 T o,
unc P : A A I ’ Y, e
: | %,
) o .] i ". Ux400dE83: popg Trhp \]
We propose Remix, an efficient and practical live | |ox400d84: retq N Figure 2: SPEC CPU2006 Performance Overhead
randomization system for both user applications and kernel || Dx400d85: nopl B (%rax, %rax) Vo
modules. Remix randomly shuffles basic blocks within their o .
ti f i Bv doi it ids th lexit ', II". 0x400d30: jmpg 0x400d5f _ : - 3.0%
respective functions. By doing so, it avoids the complexity '\ [Owiooass: leaq Owavsscieip, wrai] | |
of migrating stale function pointers, and allows mixing * P 250 b -
: : : | 0x400d3e: callg 0x400ael P 2
randomized and non-randomized code to strike a balance 'a SRR meea TR [3
: : : I'!,'II :il - EEEI E PN L i T I —]
between performance and security. Remix randomizes a 1 0x400d4c: jmpg 0x400d56 I 5 20%
running process in two steps: it first randomly reorders its I s L) L L E
. . . . ﬁ Ux400d5&: movl -4 (Srbp), %S=eax S/ { = 150 -0l _
basic blocks, and then comprehensively migrates live x| ‘ BB4! \q:— ke
pointers to basic blocks. Our experiments show that Remix 5 y o |P=abbdad: popq Srbp =)
. . . . o \ 0x400d5e: retq Z 1.0%
can significantly increase the randomness with low s N T e —— \551- S
: : = \ - P — =
performance overhead on CPU and |/O intensive < W|0x400d60: movg Srsp, Srbp ¢ 05% -4l _
benchmarks and kernel modules, even at very short |- |
]]] Ux400d73: jle Uxd400d Ve _ l BE3' I ! o
randomization intervals. 0=200d79: Smpq 0=400d35 0.0% n o ™ €0s
Ux4d00d7e: mowvl 50, -4 (%rbhp) ’F)
_ 0%400d85: Smpq 0400456 Figure 3: Apache Server Performance Overhead
Design
Figure 1: An Example of Remix on x86-64
Remix shuffles basic blocks within their respective functions - 1%
to increase run-’Flme ran.domness. Specifically, Remix first Performance Overhead 06% |- _
parses the code into basic blocks, and generates a random E
ordering of these basic blocks to guide the process. Remix The performance impact of Remix mostly comes from the A I)
. G
then lays out the basic blocks according to that ordering, following two aspects: first, live randomization has to stop the B ou Lo]
and saves the mapping between their old and new whole process or the kernel to ensure consistency. This -
positions in a table. This table is used to convert basic block introduces some latency to the whole process. Second, Remix 5 03% o I)
pointers. The first instruction of a function (i.e., the rearranges the code layout. Modern computer architectures Eooag Lo]
function entry point) is replaced by a direct jump to the first rely heavily on the cache for performance. Changing the ~
. ! 1 1 7 T e T e —
basic block. As shown in Figure 1, some instructions like process’ code layout can affect its cache profile and by 0.1%
jump and PC-relative addressing , as well as all the basic extension the performance. We measure both aspects with o L
. .« -).0ls 0.1s Is
block pointers, are updated to keep the program’s original standard benchmarks (SPEC CPU2006) and a number of 0.01 |

control flow . popular applications, with different re-randomization intervals. Figure 4: ReiserFS Performance Overhead

	Remix: On-demand Live Randomization�Yue Chen, Zhi Wang, David Whalley, Long Lu

