
Remix: On-demand Live Randomization 
Yue Chen, Zhi Wang, David Whalley, Long Lu 

Abstract 
Code randomization is an effective defense against code 
reuse attacks. It scrambles program code to prevent 
attackers from locating useful functions or gadgets. The key 
to secure code randomization is to achieve high entropy. A 
practical approach to boost entropy is on-demand live 
randomization that works on running processes. However, 
enabling live randomization is challenging since it often 
requires manual efforts to solve ambiguity in identifying 
function pointers. 

We propose Remix, an efficient and practical live 
randomization system for both user applications and kernel 
modules. Remix randomly shuffles basic blocks within their 
respective functions. By doing so, it avoids the complexity 
of migrating stale function pointers, and allows mixing 
randomized and non-randomized code to strike a balance 
between performance and security. Remix randomizes a 
running process in two steps: it first randomly reorders its 
basic blocks, and then comprehensively migrates live 
pointers to basic blocks. Our experiments show that Remix 
can significantly increase the randomness with low 
performance overhead on CPU and I/O intensive 
benchmarks and kernel modules, even at very short 
randomization intervals. 

Design 
Remix shuffles basic blocks within their respective functions 
to increase run-time randomness. Specifically, Remix first 
parses the code into basic blocks, and generates a random 
ordering of these basic blocks to guide the process. Remix 
then lays out the basic blocks according to that ordering, 
and saves the mapping between their old and new 
positions in a table. This table is used to convert basic block 
pointers. The first instruction of a function (i.e., the 
function entry point) is replaced by a direct jump to the first 
basic block. As shown in Figure 1, some instructions like 
jump and PC-relative addressing , as well as all the basic 
block pointers, are updated to keep the program’s original 
control flow . 

Performance Overhead 
The performance impact of Remix mostly comes from the 
following two aspects: first, live randomization has to stop the 
whole process or the kernel to ensure consistency. This 
introduces some latency to the whole process. Second, Remix 
rearranges the code layout. Modern computer architectures 
rely heavily on the cache for performance. Changing the 
process' code layout can affect its cache profile and by 
extension the performance. We measure both aspects with 
standard benchmarks (SPEC CPU2006) and a number of 
popular applications, with different re-randomization intervals. 

Figure 1: An Example of Remix on x86-64 

Figure 2: SPEC CPU2006 Performance Overhead 

Figure 3: Apache Server Performance Overhead 

Figure 4: ReiserFS Performance Overhead 


	Remix: On-demand Live Randomization�Yue Chen, Zhi Wang, David Whalley, Long Lu

