Pinpointing Vulnerabilities

Yue Chen
Florida State University

ychen@cs.fsu.edu

Abstract

Memory-based vulnerabilities are a major source of attack vec-
tors. They allow attackers to gain unauthorized access to computers
and their data. Previous research has made significant progress in
detecting attacks. However, developers still need to locate and fix
these vulnerabilities, a mostly manual and time-consuming process.
They face a number of challenges. Particularly, the manifestation of
an attack does not always coincide with the exploited vulnerabili-
ties, and many attacks are hard to reproduce in the lab environment,
leaving developers with limited information to locate them.

In this paper, we propose Ravel, an architectural approach to
pinpoint vulnerabilities from attacks. Ravel consists of an online
attack detector and an offline vulnerability locator linked by a record
& replay mechanism. Specifically, Ravel records the execution of
a production system and simultaneously monitors it for attacks.
If an attack is detected, the execution is replayed to reveal the
targeted vulnerabilities by analyzing the program’s memory access
patterns under attack. We have built a prototype of Ravel based
on the open-source FreeBSD operating system. The evaluation
results in security and performance demonstrate that Ravel can
effectively pinpoint various types of memory vulnerabilities and
has low performance overhead.

1. INTRODUCTION

Memory is the field of eternal arms races between attacks and de-
fenses [59]. Commodity operating systems have employed exploit
mitigation mechanisms such as data-execution prevention (DEP, aka
W o X) [19, 20], address space layout randomization (ASLR) [60],
mandatory access control (MAC) [32], etc. Yet, attackers can al-
ways find a way with new vulnerabilities and new exploit techniques.
Defenses like ASLR can often be bypassed by combining several ex-
ploits. For example, an attacker may exploit an information leak to
de-randomize the victim process before launching a return-oriented
programming (ROP [54]) attack to disable DEP, and then inject and
execute the shellcode. In light of this, a timely response to new
(zero-day) exploits is essential to defenses.

Many systems have been proposed to detect attacks. However,
they often focus on detecting symptoms of attacks. A detected
attack thus does not necessarily coincide with the targeted vulner-
abilities. For example, system call (syscall) interposition tries to
detect anomalies in the syscalls made by a protected program [27,
28, 30], based on the observation that an attacker eventually needs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ASIA CCS ’17, April 02 - 06, 2017, Abu Dhabi, United Arab Emirates

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4944-4/17/04. .. $15.00

DOI: http://dx.doi.org/10.1145/3052973.3053033

Mustakimur Khandaker
Florida State University

khandake@cs.fsu.edu

Zhi Wang
Florida State University

zwang@cs.fsu.edu

1 int main(int argc, char *argv[])
2 {

3 char buf[16];

4 strcpy (buf, argv([1]);

5 printf("%s\n", buf);

6 return 0;

71

Figure 1: A simple program with a bufter overflow at line 4.

to make syscalls to perform “useful” malicious activities. Specif-
ically, it models and monitors syscall sequences of that program.
An intrusion alert is raised if an actual sequence deviates from the
model. A detected anomaly in this case reveals neither the initial
attack nor the vulnerabilities it targets. Similarly, the detection of
control-flow hijacking may not concur with the vulnerabilities as
well. For example, taint-based attack detection systems [12, 48]
mark the untrusted inputs as tainted, and propagate those taints
throughout the system. An attack is detected if the program counter
(PC) becomes tainted. Control-flow integrity (CFI [1, 9]) can also
detect such attacks: it instruments the program with inline reference
monitors that check the program’s run-time control flow against its
pre-computed control-flow graph (CFG). A deviation from the CFG
signals that the control-flow has been hijacked. However, neither
taint- nor CFI-based systems can pinpoint the exploited vulnerabil-
ities. This can be illustrated with the simple program in Figure 1
— they both detect the attack at line 6 where the control flow is
first hijacked, but the actual vulnerability lies at line 4. Syscall
interposition detects the attack even later, i.e., when an unexpected
syscall is made. In brief, many attack detection systems fall short
of revealing the targeted vulnerabilities.

A system that can not only detect attacks but also pinpoint the ex-
ploited vulnerabilities could greatly help us in the arms-race against
attackers. First, it can significantly reduce the window of vulnera-
bility. Developers often spend lots of time to reproduce and analyze
reported attacks. This is usually a manual, time-consuming, and
error-prone process as many attacks are hard to reproduce in the
development environments. Second, it can automatically locate
zero-day vulnerabilities, as long as the attacks can be detected.
Many existing systems can detect zero-day attacks (i.e., they do not
rely on the details of known attacks), including the previously men-
tioned syscall interposition and taint-/CFI-based systems. Lastly,
locating vulnerabilities is an important first step towards automatic
software repair and self-healing.

In this paper, we propose Ravel !, a system that can pinpoint
the targeted vulnerabilities from detected attacks. Ravel stands for
“Root cause Analysis of Vulnerabilities from Exploitation Log.” It
consists of three components: an online attack detector, a record
& replay (R&R) mechanism, and an offline vulnerability locator.
R&R decouples the other two components so that the online attack
detector can operate as efficiently as possible to minimize the per-
formance overhead, and the offline vulnerability locator can employ

Merriam)

'Ravel: 1o undo the intricacies of : Disentangle (Webstor


http://dx.doi.org/10.1145/3052973.3053033

1 int process_request(int conn_fd, struct Header *
packet_header, char *buffer_to_send)

2 {

3 char buffer [MAX_BUF_LEN];

4 size_t size;

5 ssize_t recved;

6 size = (size_t) min(packet_header->length,
MAX_BUF_LEN);

7 recved = recv(conn_fd, buffer, size);

8 save_to_file(buffer, recved);

9 send(conn_£fd, buffer_to_send, size);

10 return 0;

11 3

Figure 2: A vulnerable function used as the running example. There
is a buffer overflow in line 7 caused by the integer signedness error
in line 6, and an information leak in line 9 caused by the same
integer error.

multiple, time-consuming algorithms to improve its precision and
coverage. As many attack detection techniques have been proposed,
we leverage some existing light-weight detectors (program crashes
and syscall interposition). Note that the development of attack de-
tectors is orthogonal to the Ravel framework. New techniques can
be easily employed by Ravel for better and faster attack detection.
In this paper, we focus on the design of the overall framework
of Ravel and the vulnerability locator, the main contributions of
Ravel. The intuition behind the vulnerability locator is that exploit-
ing a memory vulnerability often causes changes to the data flow,
and the source or the destination of such a change provides a good
approximation to the actual location of the vulnerability [11]. For
example, strcpy in Figure 1 can overflow into the return address
on the stack if argv[1] is longer than the buf size. This introduces
a new data flow with strcpy as the source and the return statement
(line 6) as the destination. In this case, the source actually points to
the vulnerability we want to locate. However, data-flow changes in
general can only provide a rough location of the vulnerability. Ravel
further refines them with vulnerability-specific analysis to pinpoint
common memory flaws such as integer errors, use-after-free, race
conditions, etc. We have implemented a prototype of Ravel for
the FreeBSD operating system (Release 10.2). Our experiments
with standard benchmarks and various vulnerabilities in popular
applications show that Ravel can pinpoint a variety of memory vul-
nerabilities, and it incurs only a minor performance overhead (about
2% for SPEC CPU 2006, NGINX, Apache, etc.). This demonstrates
Ravel’s effectiveness and practicality.

2. DESIGN OF RAVEL

2.1 System Overview

Given an attack, Ravel aims at automatically pinpointing the
vulnerabilities it targets. There are many challenges in locating
vulnerabilities (in addition to detecting attacks). We use the ex-
ample code in Figure 2 to illustrate them. Many design decisions
in Ravel are made to address these challenges. The code in Fig-
ure 2 is inspired by a real vulnerability in the popular NGINX
web server [16]. Function process_request abstracts how the
server processes a client’s request. Specifically, the server reads
the request from socket conn_f£fd (line 7) and logs it to a local
file (line 8), it then sends back its response (buffer_to_send) to
the client (line 9). The packet_header parameter points to the
packet header previously received from the client. Its 1ength field
specifies how much data to receive from the client. Consequently,

this field is under the attacker’s control. To avoid overflowing the
receive buffer, line 6 limits length by the buffer size. Unfortu-
nately, this line has an integer signedness error. More specifically,
packet_header->length has a type of ssize_t (i.e., signed
size_t, an alias of int). If the attacker makes it negative, it will
pass min without any change and be converted to a large positive
number saved in size. This leads to a stack-based buffer overflow
in line 7, a potential denial-of-service in line 8 (by filling the disk
space), and an information leak in line 9 (by sending lots of data to
the attacker). Note that recv normally returns any data currently
available in the socket up to the requested size. The attack thus
also controls how much data to receive and write in line 7 and 8,
respectively. We use this code as a running example in the rest of
this section. Even though the source code is used in these exam-
ples, Ravel works on program binaries and thus does not require the
source code. However, if we do have the source code or the debug-
ging information, we can easily map the located vulnerabilities in
the binary to the source code.

This example demonstrates many challenges in pinpointing vul-
nerabilities. First, the manifestation of an attack does not necessar-
ily reveal the real vulnerabilities. The real vulnerability in Figure 2,
an integer signedness error, lies in line 6. Without this flaw, the
rest of the function cannot be exploited. Therefore, line 6 is the
root cause of those attacks. It is this line that the developer should
fix. However, most attack detection systems fail to reveal this root
cause because they look for anomalies in the program’s behaviors
and can only detect an attack when or after it has happened. For
example, control-flow integrity [1] can detect a violation at line
10, and syscall interposition [30] only detects the attack when the
payload is executing. Data-flow integrity [11, 57] can reach closer
to the root cause but still cannot pinpoint it. In this paper, we
define a data flow as a def-use relation between instructions [11].
Specifically, an instruction “defines” a memory location if it writes
to that location, and an instruction “uses” a memory location if it
reads from that location. Two instructions form a def-use relation
if they write to and read from the same memory location, respec-
tively. Anomalies in the data flow can help us identify two derived
vulnerabilities in line 7 and 9 since they both introduce extra def-
use relations. The root cause, nevertheless, is the integer error
in line 6. To address this challenge, Ravel first uses a data-flow
analysis to approximate the real vulnerability, and further refines
the result by analyzing its details. Second, several vulnerabilities
may co-exist together allowing multiple ways to exploit them. Fig-
ure 2 contains four vulnerabilities. The attacker may choose to take
over the control flow by the buffer overflow, or dump the server’s
memory by the information leak (without triggering the buffer over-
flow since the attacker can control how much data to be received).
Ravel needs to handle individual vulnerabilities as well as their
combinations. Third, techniques to locate vulnerabilities often re-
quire analyzing the program’s detailed memory access patterns, a
prohibitively time-consuming technique without special hardware
support. To be practical, Ravel has to address this important per-
formance challenge. Finally, how to faithfully reproduce attacks is
also challenging but may be indispensable for finding root causes.

Figure 3 shows the overall architecture of Ravel. Ravel consists
of three components: an online attack detector, a record & replay
(R&R) mechanism, and an offline vulnerability locator. The target
process is executed under the control of a record agent (we call it
the recorder for brevity). The recorder logs the complete execution
history of the process for replaying later. Recent advances in R&R,
such as eidetic systems [23], allow Ravel to continuously record
the execution of a process with low performance and storage over-
head. While recording, the attack detector monitors the execution



Process

Target Checkpoint

Process

Kernel
o Exetution :]]/ Replay Agent

Vulnerability Detector

I

istory’

Phase I: Normal Execution Phase II: Vulnerability Detection

Figure 3: Overall architecture of Ravel

of that process for exploits and attacks. In order to capture real-
world attacks, the recorder and the attack detector run on production
systems. If an attack is detected, the execution log can be sent to
the developer (likely on a different computer) for further analysis
using the vulnerability locator. The vulnerability locator replays the
recorded execution and performs a number of analyses to pinpoint
the vulnerabilities. Specifically, it first uses a data-flow analysis to
roughly locate the vulnerabilities and then performs vulnerability-
specific analysis to refine the results. In this architecture, we use
a combination of the general data-flow analysis and vulnerability-
specific analyses to fulfill Ravel’s precision requirements (the 1st
and 2nd challenges), and leverage R&R to address the performance
and reproducibility requirements (the 3rd and 4th challenges). In
the rest of this section, we give details of these components.

2.2 Detecting Attacks

To locate vulnerabilities, Ravel first needs to detect and record the
attacks. The attack detector thus plays an important role in Ravel.
In order to handle real-world (zero-day) vulnerabilities, the attack
detector has to run on the production system. This imposes strict
performance and effectiveness requirements on the attack detector.
However, Ravel is structured as an extensible framework. It can em-
ploy many attack detection techniques, such as syscall interposition
and CFI. This is made possible by the design of Ravel. Specifically,
the vulnerability locator deduces the rough location of an exploited
vulnerability by searching for anomalies in the data flow and further
refines that with detailed analyses. Therefore, it is sufficient for the
vulnerability locator to know that the execution log contains certain
(unknown) attacks. This minimal requirement allows Ravel to em-
ploy any attack detection technique as long as it is effective and has
low performance overhead. We want to emphasize that the attack
detector itself may provide very little help in locating vulnerabili-
ties. For example, syscall interposition detects attacks only when
the payload is executing, but the actual exploitation is hidden in the
haystack of other executed instructions.

In our prototype, we employ two simple attack detection tech-
niques — program crashes and syscall interposition [30]. They both
have low performance overhead. With the wide-spread deployment
of exploit mitigation techniques like W A X and ASLR, they are
also more effective than before. For example, W A X prevents
the injected malicious code from being executed. To address that,
the attacker often uses return-oriented programming (ROP [54]) to
change the process’ memory permission with an unplanned syscall.
This can be readily detected by syscall interposition. Moreover,
ASLR often makes an exploit less stable, leading to more frequent
crashes under attack. Both techniques can be easily integrated into
Ravel. In particular, our implementation of syscall interposition
validates both syscall sequences and parameters. Syscall interposi-
tion has been well researched [26, 30, 34, 39, 40, 43, 45, 46, 50], so
we omit the details here. The derivative vulnerabilities in Figure 2
(line 7, 8, and 9) can be detected by checking syscall parameters and
potentially by crashes if ASLR is supported. We plan to support
more advanced detection techniques, such as CFI, in the future.

2.3 Record and Replay

Record & replay (R&R [23, 31, 41, 53]) plays an important role
in Ravel: it bridges the performance gap between the attack detec-
tor and the (sluggish) vulnerability locator, making Ravel usable
even in production systems, and it makes the attack reproducible for
many times. How to faithfully reproduce in-the-wild bugs/attacks
is a big challenge in the software development and maintenance.
Ravel imposes two requirements on its R&R system. First, since
the recorder runs on the production system, it should incur min-
imal performance and storage overhead. Additionally, it must be
compatible with the attack detector without changing the program’s
normal execution. Second, the execution history is replayed by the
vulnerability locator, which instruments the replayed execution with
heavy-weight analyses. These analyses will make additional sys-
tem calls (e.g., to allocate memory for the intermediate results) and
consequently affect the memory layout of the replayed process. The
replayer must isolate these side-effects to keep the replay faithful.

To fulfill these requirements, Ravel employs a process R&R sys-
tem, which records and replays a single process or a group of related
processes. The process R&R can be implemented either at the li-
brary level or the kernel level. Ravel chooses the latter because it
is more secure in an adversarial environment — the library-level
recording can be bypassed if the program/payload makes direct sys-
tem calls, and the recorded history cannot be trusted if the process is
compromised because the recorder exists in the (compromised) pro-
cess’ address space. Moreover, our R&R system assumes that the
target program properly synchronizes its access to shared resources.
Deterministically recording and replaying arbitrary programs that
have race conditions could be very complicated and inefficient with-
out hardware support [41]. If the program does have race condi-
tions (i.e., bugs that should be fixed by developers), the replayed
execution will deviate from the recorded history and can thus be
detected. Lastly, Ravel records the complete execution history of
the target process. To reduce the storage overhead, Ravel borrows
various techniques from the Eidetic System [23], a practical always-
on whole-system R&R system. For example, Ravel uses LZMA to
compress the execution log and avoids logging the data that can be
recovered from the environment, such as reading a static file.

2.3.1 Record

To faithfully replay a process, Ravel needs to record all the non-
deterministic inputs to that process. These inputs include both the
data and events from the external environment (e.g., network packets
and signals) and the internal events (e.g., locks). Next, we describe
in detail how these two types of inputs are handled by Ravel.

The syscall interface is an ideal location to intercept and record
external inputs such as syscall returns, the user-space memory mod-
ified by a syscall, and signals. Syscall returns need to be recorded
because they may affect the program execution. For example, a
program may use its process id returned by getpid as one of the
ingredients to generate random numbers. Syscall returns can also
affect the control flow (e.g., error handling). It is rather straight-
forward to record syscall returns — we just need to log them in
the execution history. A syscall may modify the user-space mem-
ory. For example, the stat syscall writes the file status into the
user-provided memory. Most such syscalls explicitly define the
structures of the exchanged data. If so, we simply save the modified
memory after the syscall returns. In this way, we understand and
retain the semantics of the modified data. However, syscalls like
ioctl may write different amounts of data to the user space when
given different parameters. Even worse, ioctl can be dynami-
cally extended by a loaded kernel module. It is hard to record all
the user-space memory written by these system calls. To address



that, Ravel hooks the FreeBSD kernel’s copyout function to record
(and replay) the data copied to the user space during those syscalls.
Similar to Linux’s copy_to_user function, FreeBSD exclusively
uses copyout to write data to the user-space. Signals can also in-
troduce non-determinism to the recorded process. A signal can be
either synchronous and asynchronous. A synchronous signal (e.g.,
SIGSEGYV) is the result of exceptional program behaviors. There is
no need to record this kind of signals because replaying the program
will trigger the same exceptions. An asynchronous signal (e.g., an
alarm) instead must be faithfully recorded and replayed. Since it is
asynchronous, we can delay its delivery until a syscall return. This
greatly simplifies the replay of asynchronous signals.

Some instructions can bypass the kernel and directly interact
with the hardware. A typical example on the x86 architecture is
the RDTSC instruction, which returns the CPU’s current time-stamp
counter. Some programs use the outputs of RDTSC for random
number generation. Therefore, Ravel has to record the outputs
of this instruction. However, RDTSC is by default an unprivileged
instruction and can be executed by any user programs. To address
that, we change the CPU’s configuration (the TSD flag in the CR4
register) to intercept the execution of RDTSC by user processes and
record its outputs for the target process. The interception of RDTSC
is turned off when the kernel switches to other processes. As such,
there is no overhead for other processes.

The internal non-determinism comes mostly from accessing the
shared memory. To avoid race conditions, the program should
synchronize these accesses, say, by using locks. Without race
conditions, it is sufficient for Ravel to record the order of pro-
cesses (or threads) entering critical sections. Replaying the ex-
ecution in the same order ensures that the shared memory is in
the correct state for each critical section. To this end, we instru-
ment the synchronization primitives in common libraries (e.g., the
pthread library) to record and replay them in orders. Exam-
ples of these primitives include pthread_mutex_lock, pthread_
rwlock_wrlock, pthread_cond_broadcast, pthread_cond_
signal, sem_wait, atomic_store, atomic_exchange, etc. On
the other hand, if the program does have race conditions (e.g., two
threads modify the same data without synchronization), the replay
will deviate from the recorded execution history. Ravel tries to
detect race conditions when that happens.

2.3.2  Replay with Instrumentation

After Ravel detects an attack, it starts to replay the recorded exe-
cution to locate vulnerabilities. For most syscalls, such as getpid
and stat, it is not necessary to re-execute them. Ravel just returns
the recorded return values and updates the user memory if nec-
essary. Similarly, network connections (sockets) are not recreated
during the replay. Ravel directly returns the recorded data to the
replayed process. Other syscalls, typically memory related one have
to be re-executed. For example, most programs use mmap to allocate
memory. The kernel may return a different block of memory during
the replay. To address that, we pass the recorded memory address in
the first parameter of mmap, which is a suggestion of the allocation
address to the kernel. During our experiments, the kernel always
accepts the suggestion and allocates the same memory.

During the replay, Ravel instruments the program in order to
detect anomalies in the process’ memory access patterns. We use
dynamic binary translation (BT) for this purpose. As such, the same
program binary can be used for both recording and replaying. The
BT engine can interfere with the replay. For example, the engine
needs to allocate memory for its own use (e.g., to cache the translated
code). This may conflict with the memory layout of the recorded
execution. The engine also makes extra syscalls, for example, to

write the log to the disk. Ravel tries to limit the interference to
ensure the replayed execution is faithful to the recorded one. For
example, it loads the BT engine in an unused memory area, and
asks the kernel to allocate the code cache in another unused area.
Since the engine is separated from the code cache 2, Ravel can
tell whether a syscall is made by the engine or the program itself,
and makes the replay decision accordingly. Note that BT engines
often make direct syscalls rather than calling libc functions to avoid
disrupting the translated process because many libc functions are
non-reentrantable or thread-unsafe.

Ravel records the complete execution history of the target process.
Even though replaying is often much faster than recording [41], it
may still take a long time to replay a long-running process, such
as a web server. To address that, we can take periodic snapshots
of the process and start replaying from the most recent snapshots
if the recorded history is too long. We should continue searching
backwards for vulnerabilities until a vulnerability is located. This
may introduce false negatives if there are multiple exploited vul-
nerabilities because of the missing/partial def-use relations. Our
prototype does not support this optimization so far.

2.4 Pinpointing Vulnerabilities

Vulnerability locator aims at pinpointing the targeted vulnerabil-
ities from a recorded execution that is known to contain attacks. It
is based on the key observation that memory exploits often change
the data flow. As such, it first uses a data-flow analysis to locate the
rough locations of the vulnerability and further refines them with
specific analyses targeting common types of memory vulnerabili-
ties. Ravel is designed as an extensible framework so that analyses
for less common types of vulnerabilities can be added later.

2.4.1 Data-Flow Analysis

Ravel calculates the probable locations of an exploited vulnera-
bility using the data-flow analysis. We define a program’s data flow
as the def-use relations between instructions [11]. Specifically, an
instruction defines a memory address if it writes to that address, and
an instruction uses a memory address if it reads from that address.
If two instructions define and use the same address respectively,
they form a def-use relation. To detect data-flow anomalies, Ravel
computes a data-flow graph (DFG) for the program beforehand us-
ing dynamic analysis. During the replay, it instruments the process
to capture a detailed execution log, including all the run-time mem-
ory accesses. It then extracts from this log the data-flow of the
program under attack. If an actual def-use relation is not in the
pre-computed DFG, we consider both instructions of this def-use
relation as a candidate for the vulnerability. However, it is unclear
which instruction is the one.

Ravel uses heuristics to help determine whether the “def” or the
“use” more likely marks the vulnerability. First, if multiple def-use
relations are introduced by one of these instructions, that instruction
more likely is the vulnerability. For example, in a buffer overflow,
the def instruction may overwrite a large block of memory used later
by several instructions. Second, if the data is used by a syscall that
sends data outside (e.g., send, sendmsg, write), the vulnerability
is likely related to the use (i.e., an information leak). Third, if the
accessed memory contains control data, the vulnerability likely lies
in the def instruction. We can identify control data if it is read
by instruction fetching (e.g., a return instruction fetches its return
address from the stack), or if it is subsequently used by an indirect
branch instruction. If none of the above heuristics applies, Ravel
reports both instructions as a viable candidate.

%In dynamic BT, the translated code executes from the code cache,
instead of the original code section.



Ravel’s data-flow analysis is performed at the instruction level.
For a logged syscall, Ravel understands its semantics and can iden-
tify the memory regions it reads from and writes to. From this
perspective, a syscall can be treated as a pseudo instruction with
an extended define and use sets. Moreover, if an identified instruc-
tion lies inside a library, we trace back from that instruction until
we reach its call site. A call to a library function is normally en-
coded as the call to a PLT (procedure linkage table 3) entry. This
step is necessary otherwise many identified vulnerabilities would
be erroneously attributed to library functions. For example, buffer
overflows are often caused by incorrect use of library functions like
strcpy and memcpy.

Ravel’s data-flow analysis can cover lots of memory vulnerabili-
ties as most memory-corrupting exploits disturb the program’s data
flow. For example, it can locate both memory vulnerabilities in
Figure 2. Specifically, line 7 contains a buffer overflow. If ex-
ploited, it defines the overflowed data on the stack, including the
return address pushed by the caller of process_request. When
the return address is fetched at line 10, an extra def-use relation is
detected between these lines. Since this use is an instruction fetch,
Ravel reports that the vulnerability lies in line 7. Line 9 contains an
information leak. If exploited, it reads beyond buffer_to_send,
creating multiple def-use relations with the same use. Ravel thus
reports line 9 as the potential vulnerability. However, as demon-
strated by Figure 2, the data-flow analysis is not the final solution.
The real vulnerability could hide in somewhere else. To this end,
Ravel tries to further refine the results with the following analyses.

2.4.2 Integer Errors

Integer errors usually are not exploited alone but followed by other
exploits. For efficiency, Ravel focuses on common integer errors
associated with buffer access violations. Specifically, it checks for
common integer errors if a reported vulnerability involves block
memory operations as these operations are often conditioned by
a length parameter. Such vulnerabilities include calls to popular
library functions that are frequently associated with buffer overflows
(e.g., memmove, memcpy, strncpy, strncat, strlcpy, and their
many variants) and I/O functions or syscalls (e.g., recv, recvirom,
and read). However, some programs may use their own block
data copy/move functions rather than the standard 1ibc functions.
These functions often employ the repeated string instructions of
x86 (i.e., instructions like MOVS/STOS/CMPS/LODS/SCAS prefixed
by REP/REPE/REPNE/REPNZ/REPZ). In this case, register RCX
contains the data size, and register DS :RSI and ES:RDI contain the
source and destination addresses, respectively. To locate integer
errors, we search from the reported vulnerability backward.

There are several types of integer errors, such as assignment
truncation, integer overflow/underflow, and signedness error. An
assignment truncation happens when an integer is assigned from a
longer type to a shorter type. This is usually done by simply discard-
ing the extra most significant bits. An integer overflow/underflow
happens when the result of an integer arithmetic exceeds the valid
range of the target register. A signedness error happens when an
integer is converted between a signed type and an unsigned type.
The code in Figure 2 contains a signedness error at line 6. Note
that regular C/C++ programs may contain both benign and harmful
integer errors [24]. However, false positives will not be a big issue
for Ravel since all its detected integer errors are related to a reported
vulnerability and thus are more likely to be true positives.

Detecting assignment truncations is relatively simple because
x86’s instruction encoding specifies the width of memory or reg-

3PLT/GOT is the structure to support dynamic linking [44].

1 uint8_t *buffer = new uint8_t[size+chunk_sizel;

2 if (size > 0) {
3 memcpy (buffer, data, size);
43

Figure 4: Code snippet of CVE-2015-3864 in Android. There is an
integer overflow in line 1, leading to the buffer overflow on line 3.

ister accesses. Meanwhile, integer overflows/underflows can be
detected by checking the RFLAGS register, which contains various
bits for arithmetic instructions. However, signedness errors are
more challenging to identify because many integer instructions do
not encode the signs of their operands. For example, signed and un-
signed integer additions/subtractions are essentially the same with
the two’s complement data format. To address that, we collect hints
of the signs for those operands from other instructions that access
them. Many instructions do carry sign information. For example,
the JG, JGE, JL, and JLE instructions select a branch based on the
signed comparison, while JA, JAE, JB, and JBE instructions are
based on the unsigned comparison. Conditional move instructions,
such as CMOVG and CMOVA, also carry the sign information. Modern
compilers tend to use conditional moves for better performance.
Some arithmetic instructions also carry the sign information, such
as SAR/SHR and IDIV/DIV. A second source of the sign information
comes from the reported vulnerability itself. For example, functions
like memcpy provide a clear definition of their parameter types. If
there are conflicts in the collected hints of signs, a signedness error
is highly likely and will be reported.

Ravel can detect the signedness error in Figure 2. Specifically,
the data-flow analysis locates the vulnerability in line 7 (or line 9
depending on the attack), which specifies that its parameter size is
unsigned. Searching backwards, Ravel finds that size was assigned
from a signed number (min uses a signed comparison instruction).
This conflict in size’s signs allows Ravel to identify this integer
error. Figure 4 shows an example of integer overflows. The code
is related to CVE-2015-3864 [17], an integer overflow in Android’s
built-in Stagefright media library. If size + chunk_size over-
flows, the allocated buffer may be smaller than the data length,
leading to the buffer overflow in line 3. Ravel can detect this integer
overflow by checking the RFLAGS register during the replay.

2.4.3 Use-After-Frees and Double-Frees

Ravel instruments the memory allocation/free functions to keep
track of the memory life-time. This information can confirm buffer
overflows (the buffer size vs. the data size) and identify use-after-
free and double-free flaws. Use-after-free and double-free have
become popular attack vectors in recent years. Even though the
data-flow analysis can discover anomalies in the data flow caused
by them, it does not have enough information to correctly identify
them. This insufficiency can be addressed by the memory life-time
information. For example, a vulnerability can be categorized as use-
after-free if a block of the freed memory is accessed again. Note
that some programs use their own memory management functions
rather than the standard libc or C++ functions. This issue can be
addressed through source code annotation or with heuristics.

2.4.4 Race Conditions

With the ubiquitous deployment of exploit mitigation techniques
like DEP and ASLR, race conditions have become a more popular
attack vector. As previously mentioned, Ravel’s replayed execution
may deviate from the recorded one if the program has race con-
ditions. For example, they may have different syscall sequences,
or the replayed execution crashes but the recorded one does not.



When that happens, Ravel runs an existing algorithm [2] to detect
race conditions during the replay. Specifically, it checks whether
two potentially racing operations (e.g., two threads write to the
same variable) have a happens-before relation, i.e., one operation
is guaranteed to happen before the other. Such a relation can be
established if these operations are protected by locks or ordered
through inter-process communications (e.g., pipes). We plan to add
the capability to root-cause race conditions by identifying common
data racing patterns [37].

2.5 Prototype Efforts

We have implemented a prototype of Ravel based on the FreeBSD
release 10.2. The R&R system is implemented from scratch in the
kernel with a small user-space utility to control recording and re-
playing. We added about 3.9K SLOC (source lines of code) to the
kernel, and the utility consists of about 300 SLOC. Vulnerability
locator is based on the open-source Valgrind [47] instrumentation
framework. We made some changes to the Valgrind framework
itself so that it could be used in the replay (Section 2.3.2). In addi-
tion, Valgrind’s system call wrappers for FreeBSD are incomplete.
‘We wrote our own and contributed it back to the project. We added
about 2.2K SLOC to Valgrind in total. The replayer captures the
whole execution trace of the replayed program, specifically, the ex-
ecuted instructions and the addresses and sizes of their memory
accesses. Based on the execution trace, we implemented Ravel’s
data-flow analysis, integer error detection, and use-after-free and
double-free detection, and integrated Valgrind’s existing race con-
dition detection. Most of these analyses work at the byte granularity
except the integer error detection, which works according to the in-
structions’ operand sizes. As mentioned before, Ravel works on
program binaries directly. After locating a vulnerability, we revert
it back to the source code if the program contains the debugging
symbols.

3. EVALUATION

In this section, we first evaluate the effectiveness of Ravel against
common memory-based vulnerabilities and then measure the per-
formance overhead caused by Ravel.

3.1 Effectiveness

To evaluate the effectiveness of Ravel, we first analyze how Ravel
can handle common memory vulnerabilities, such as buffer over-
flows, integer errors, information leaks, and format string vulnera-
bilities. We then describe our experiments with a variety of vulner-
abilities, including two high-impact real-world ones.

By design, Ravel can detect any attacks that change the pro-
gram’s run-time data flow. However, the data-flow analysis itself
often cannot provide the precise locations of the exploited vulner-
abilities. To address that, Ravel further refines the results with
vulnerability-specific analyses. There are many types of common
memory vulnerabilities. In the following, we discuss how Ravel can
handle some of them, starting with the most common one, buffer
overflows.

Buffer overflows: a buffer overflow, or a buffer overrun, happens
when a program writes more data into a buffer than it can hold,
overwriting the adjacent data. A typical example is to use functions
like strcpy that do not check the buffer size to copy untrusted
data. Buffer overflows can often lead to arbitrary code execution
and denial-of-services. Ravel can locate buffer overflows if the
overwritten data are used after the attack: when a piece of data is
read, a new def-use relation is introduced between the vulnerability
and the reader. In addition, Ravel could tell that the def is likely the
vulnerability if there are multiple new uses with the same def. An

example is shown in Figure 2 line 7 in which a new def-use relation
is introduced between line 7 and 10.

Integer errors: integer errors include a number of flaws related
to integer operations such as arithmetic, type casting, truncation, and
extension. For example, an integer overflow happens when the result
of an integer arithmetic exceeds the valid range of the destination
type. Integer errors are often not exploited alone but instead with
other vulnerabilities, such as buffer overflows. To detect integer
errors, Ravel first locates the symptomatic vulnerability and then
searches for possible integer errors if that vulnerability takes integer
parameters. In Figure 2, after locating the buffer overflow in line
7, Ravel continues to search for integer errors because recv’s size
parameter is and integer and discovers the integer signedness error
in Line 6.

Information leaks: an information leak happens when a pro-
gram inadvertently leaks data to unauthorized parties that may help
them obtain sensitive information or launch further attacks. For ex-
ample, an attacker often exploits information leaks to de-randomize
the victim process’ address space before launching return-oriented
programming attacks. Information leaks can also disclose confi-
dential information to attackers. A recent high-profile example is
the Heartbleed flaw in the OpenSSL library. Heartbleed can be
exploited to leak the server’s memory to the attacker, 64K B at a
time. This eventually allows the attacker to steal the server’s private
key. Ravel can precisely locate information leaks: an information
leak reads more data than it should. This creates additional def-
use relations between the writers of that data and the vulnerability.
Accordingly, Ravel can tell that the use likely is the vulnerability
since there are multiple defs with the same use. Afterwards, Ravel
tries to identify integer errors. In Figure 2, new def-use relations
are introduced between line 9 and the writers of the data adjacent
to buffer_to_send (not shown in the figure).

Use-after-frees: use-after-frees are another common type of
memory vulnerabilities, in which a program erroneously references
the memory that has been previously freed. Depending on its nature,
a use-after-free may allow an attacker to crash the program, corrupt
data, or even execute the injected code. In a typical scenario to
exploit a use-after-free, the attacker tries to allocate an object under
his/her control immediately after the vulnerable memory is freed.
The memory allocator likely assigns the just-freed memory to this
object, giving the attacker full control over the to-be-reused mem-
ory. If the reused memory originally contains a data pointer, the
attacker could exploit it to read or write arbitrary data. Likewise,
if it contains a code pointer, the attacker could exploit it to hijack
the control flow. Ravel can locate a use-after-free if the attacker-
controlled object is different from the vulnerable object (this is often
the case otherwise the attacker can simply misuse the object under
his control). Consequently, they are accessed by different instruc-
tions, and new def-use relations are created from the writers of the
attacker-controlled object to the readers of the vulnerable object.
Ravel also keeps track of the data lifetime to facilitate the detection
of use-after-frees and double-frees.

Format string vulnerabilities: a format string vulnerability oc-
curs when a function, such as printf, accepts an attacker-controlled
format string. The format string decides how the function interprets
its following parameters. By manipulating format directives, an
attacker can read data from the stack, corrupt memory, and even
execute arbitrary code. Ravel can pinpoint format string vulner-
abilities. For example, a new def-use relation will be introduced
between the format function and its caller if the vulnerability is ex-
ploited to read the return address. Format string vulnerabilities are
becoming less common nowadays because it is relatively easy for
compilers to automatically detect them. For example, gcc allows



typedef struct {

off_t content_length_n;

1

2

3

4 C

5 } ngx_http_headers_in_t;

6 ...

7 u_char buffer [NGX_HTTP_DISCARD_BUFFER_SIZE];

8 ...

9 size = (size_t) ngx_min(r->headers_in.
content_length_n, NGX_HTTP_DISCARD_BUFFER_SIZE
DN

10 n=r->connection->recv(r->connection, buffer, size);

Figure 5: Code sketch of CVE-2013-2028 in NGINX. An integer
signedness error at line 9 leads to a buffer overflow at line 10.

a program to annotate its own format functions with the format
compiler directive. This feature is extensively used by the Linux
kernel to protect its debugging and logging functions.

So far, we have discussed Ravel’s effectiveness in locating com-
mon memory vulnerabilities. We also experimented with a number
of real-world and synthetic vulnerabilities and attacks. In the fol-
lowing, we will give the details of several such experiments.

3.1.1 CVE-2013-2028 of NGINX

NGINX is a popular open-source web server. It powers some
of the most popular web sites on the Internet, such as Netflix,
Hulu, CloudFlare, and GitHub [49]. Vulnerabilities in NGINX
consequently have very high impacts.

Figure 5 shows the CVE-2013-2028 vulnerability in NGINX (ver-
sion 1.3.9to 1.4.0). This flaw lies in NGINX’s faulty handling
of chunked transfer-encoding, a standard feature of HTTP 1.1. This
feature allows data to be sent in a series of chunks. It replaces the
regular Content-Length HTTP header with the “Transfer-Encoding:
chunked” header. Because it allows data to be transferred piecemeal
without knowing their total length, the chunked encoding is partic-
ularly useful for dynamically generated data. In this encoding, the
length of each chunk is prefixed to the actual data in the chunk. A
vulnerable NGINX server parses the chunk length and stores it in
r->headers_in.content_length_n. The length is then com-
pared to the buffer size in an effort to prevent buffer overflows.
Unfortunately, there is a signedness error at line 9. Specifically,
content_length_n is a signed integer. If the attacker makes it
negative, ngx_min returns it without any change. The length is
then casted to an unsigned integer (size). This vulnerability could
be exploited to overflow the buffer on the stack (buffer defined at
line 7) at line 10.

Interestingly, this vulnerability cannot be exploited as is on the
FreeBSD system because the FreeBSD kernel prevents system calls
like recv from accepting unreasonably-large size parameters. This
is essentially an ad-hoc syscall parameter validation. In spite of
that, it is a rather effective defense against similar attacks without
requiring any change to user programs. With this protection, the
buffer overflow at line 10 is foiled by the kernel, i.e., the kernel
has located this vulnerability. As such, we can omit the data-
flow analysis and directly start other analyses. Ravel reports the
signedness error at line 9. If we remove the kernel’s protection,
this vulnerability becomes exploitable. Note that even though the
size parameter to recv is really large, the attack can control how
much data to be returned by recv because recv returns the existing
data cached in the socket without waiting for the full requested size.
In this experiment, we launched a return-oriented programming
(ROP [54]) attack against the server, similar to Blind ROP [7].
Exceptions caused by the attack allowed Ravel to detect the attack
and identify the buffer overflow at line 10. Ravel further traced it
back to the signedness error at line 9 based on the conflicts in the

1 /* ssl/dl_both.c */

2 int dtlsl_process_heartbeat(SSL *s)

3 9

4 unsigned char *p=&s->s3->rrec.data[0], *pl;

5 unsigned short hbtype;

6 unsigned int payload;

7 unsigned int padding = 16;

8 C

9 /* Read type and payload length first */

10 hbtype = *p++;

11 n2s(p, payload);

12 .

13 pl = p;

14 if (hbtype == TLS1_HB_REQUEST) {

15 unsigned char *buffer, *bp;

16 -

17 int r;

18 -

19 buffer = OPENSSL_malloc(l + 2 + payload+
padding);

20 bp = buffer;

21 /* Enter response type, length and copy
payload */

22 *bp++ = TLS1_HB_RESPONSE;

23 s2n(payload, bp);

24 memcpy (bp, pl, payload);

25 bp += payload;

26 /* Random padding */

27 RAND_pseudo_bytes (bp, padding);

28 r = dtlsl_write_bytes(s, TLS1_RT_HEARTBEAT,
buffer, 3 + payload + padding);

29

30 }

31

32}

Figure 6: Code sketch of CVE-2014-0160 (aka. Heartbleed). The
attacker controls payload. Memcpy may copy a large amount of ex-
tra data to buffer, and send it back through dt1lsl_write_bytes.

hinted signs of size: unsigned at line 10 (deduced from recv), and
signed at line 9. In particular, ngx_min is compiled into a signed
comparison followed by a conditional move instruction (cmovg) .

3.1.2 CVE-2014-0160 (Heartbleed)

CVE-2014-0160, commonly known as Heartbleed, is an informa-
tion leak in the popular OpenSSL library. OpenSSL is a ubiquitous
open-source TLS/SSL and cryptography library. It is shipped in
most Unix-like systems (e.g., Linux and BSDs) and available for
other systems. It is also embedded in lots of devices like routers.
The impacts of this flaw is serious and far-reaching.

Heartbleed is a flaw in OpenSSL’s handling of the heart-beat
extension, which essentially is an echo protocol (similar to ping in
IP) to ensure the liveliness of an SSL connection. Heartbleed allows
an attacker to steal the victim’s memory up to 64KB at a time. It
has been demonstrated that critical data, such as the private key for
TLS/SSL, could be leaked by this flaw. Figure 6 shows the code
sketch of this flaw. Specifically, the payload field of the heartbeat
request packet specifies how many bytes of the request data should
be sent back to the requester. This field is extracted from the request
packet at line 11. A response buffer is allocated at line 19 and the
response is assembled in it by line 22 to 27. Particularly, line 24
copies the data from the request packet to the buffer. Finally, the
response is sent to the requester at line 28. This bug is caused
by the missing check that the request payload has more bytes than
payload. Because the payload field is 16 bits, at most 65,535
bytes of the data can be exfiltrated each time.

In our experiment, we ran OpenSSL 1.0.1 with NGINX to serve
HTTPS requests. We kept exploiting this bug with different com-
binations of requests in order to obtain the server’s private key.



Program Name Vulnerability Type Pinpointed?
BitBlaster Null Pointer Derefernece Yes
Heap Overflow Yes
CGC_Planet_Markup_Language_Parser NULL Pointer Dereference Yes
StackOverflow Yes
CGC_Board Heap Overflow Yes
CGC_Symbol_Viewer_CSV Integer Overflow Yes
CGC_Video_Format_Parser_and_Viewer = Heap Overflow Yes
Heap Overflow Yes
simple_integer_calculator Integer Overflow Yes
- - NULL Pointer Dereference Yes
Out-of-bounds Read Yes
Null Pointer Dereference Yes
Diary_Parser Out-of-bounds Read Yes
Stack Overflow Yes
Heap Overflow Yes
electronictrading Integer Overflow Yes
Untrusted Pointer Dereference Yes
Use After Free Yes
Enslavednode_chat Heap Overflow Yes
Kaprica_Script_Interpreter Arbitrary .Format String Yes
NULL Pointer Dereference Yes
. Double Free Yes
KTY_Pretty_Printer Stack Overflow Yes

Table 1: Summary of the evaluation results on a number of DARPA CGC programs.

Moreover, the server was configured to automatically restart if it
crashed due to invalid memory reads caused by the attack. After
catching an exception, Ravel replayed the attack and discovered ex-
tra def-use relations from other instructions to memcpy at line 24.
We concluded that the vulnerability lied at line 24 because those re-
lations had a common use. Ravel further checked for integer errors.
None was found.

3.1.3 Experiments with CGC Challenges

To evaluate Ravel’s effectiveness on a more diverse set of vul-
nerabilities, we used the sample challenges from DARPA’s Cyber
Grand Challenge (CGC) [18], a competition to design better Cyber
Reasoning Systems that can automatically identify software flaws
and scan for affected hosts in the network. Challenges in CGC
are designed to represent a variety of software vulnerabilities. In-
stead of contrived simple test cases, they approximate real software
vulnerabilities with enough complexity, ideal for stressing vulner-
ability discovery and defense systems. Each challenge comes with
a set of proof-of-vulnerability (POV) inputs that can trigger these
vulnerabilities. The record and replay of CGC programs are sim-
ple since they only use a very small number of system calls. In
our experiments, we used Ravel to pinpoint these vulnerabilities.
The results are summarized in Table 1. It shows that Ravel can
help developers locate a variety of types of vulnerabilities. In the
following, we give details for one of the challenges (CNMP).

The CNMP (Chuck Norris Management Protocol) challenge mod-
els a message management system, in which users can add, list,
count, and show messages (jokes, to be more specific). The related
vulnerable functions are listed in Figure 7. insert_joke inserts a
message into the system’s database. If the message’s length exceeds
athreshold (line 7), the system logs this message using syslog (line
10) and returns an error code. Inside the syslog function, its argu-
ment format is passed to vsnprint £ (line 21), a string-formatting
function. Since joke_str is controlled by the attacker, a format-
string vulnerability can be triggered by passing a crafted string.

In this experiment, we added a long message with format spec-

ifiers to the system database. The program crashed due to its
vsnprintf implementation. Ravel replayed the program and re-
ported that over-read happened inside function vsnprintf, where
extra def-use relations were introduced. Since this function takes
a format string as its input, it is easy to figure out the vulnerability
by looking at the recorded function arguments (a format string).
A developer can fix this vulnerability by using “%s” as the format
string in Line 10.

1 // add joke to joke_db.
2 int insert_joke(jokedb_struct *jokedb, const char *
joke_str) {

3 // return error (-1) if jokedb is already full.

4 if (jokedb->count >= MAX_JOKES) {

5 return -1;

6 // return error (-2) if joke_str is too long.

7 } else if (strlen(joke_str) >=
MAX_JOKE_STRING_LEN - 1) {

8 if (LOGLEVEL >= LOG_INFO) {

9 syslog (LOG_ERROR, "Joke was too long

-->\n");

10 syslog (LOG_ERROR, joke_str);

11 }

12 return -2;

13 } else {

14

15 }

16 }

17 int syslog(int priority, comnst char *format, ...) {

18

19 // process format string

20 // and write it to log_entry buffer

21 log_entry_len += vsnprintf(log_entry_idx,
MAX_SYSLOG_LEN - log_entry_len, format,
args);

22

23 return 0;

24 %

Figure 7: Code sketch of vulnerability-related functions in CNMP.
syslog takes the user-controlled joke_str, and passes it as a
format-string argument to vsnprintf.



2.5%
- —
ES R 07/ e O 1
5
>
o —
B LS5 [ o *
=
&
£
£
B 0% b N i
2 1.0%
3
2
=
& 0.5% [ e B 1
0.0% 1 | ’_‘ == [ 1 | (| H | H ’_‘
. b, & R 5. 7 7 -+, R %,
?{O\) e e Ty 0}015 % 69’&; (yz % "{,/ 6{9’] 6010 6(3 /)00/
Y, % d,})( © D

Figure 8: Performance overhead of Ravel’s online components rel-
ative to the original FreeBSD system.

3.2 Performance

To make the most use of Ravel, it should be deployed in pro-
duction systems to catch in-the-wild, zero-day vulnerabilities. This
imposes a strict performance requirement on both its design and
implementation. However, locating vulnerabilities requires time-
consuming analyses of the program’s memory access patterns. To
address that, we use record & replay (R&R) to separate the system
into an online component and an offline component. The former
records the program’s execution and detects ongoing attacks; while
the latter replays the execution to locate vulnerabilities. As such,
the performance of the online component is more critical than the
offline component and is the focus of our performance evaluation.
The online overhead can mainly be attributed to the attack detection
and the recording. Our prototype employs two lightweight attack
detection mechanisms. As such, most of the overhead comes from
the recording.

We measured the performance of Ravel with a set of standard
benchmarks (SPEC CPU 2006 #) and several real-world applica-
tions. All the experiments were conducted on an Intel Core i7
computer with 16 GB of memory. The OS was based on FreeBSD
release 10.2 for x86-64. All the test applications were installed
directly from FreeBSD’s software repository. These applications
include two popular web servers, NGINX and Apache. We used
ApacheBench to send 5 x 10° requests to each server with a con-
currency of 10. To diversify the tests, Apache was configured
to work in the worker mode with multi-threading enabled; while
NGINX was configured to use poll, instead of kqueue as it is
in Apache, for connection processing. The third application we
tested was dd. Specifically, we used it to read 10MB of data from
the kernel’s random number pool (/dev/random) and compressed
the data with 1zma. The command line was dd if=/dev/random
bs=1k count=10000 | lzma > /dev/null. As mentioned be-
fore, random numbers are a source of non-determinism and are
always recorded.

The results are illustrated in Figure 8. It shows that the per-
formance overhead of Ravel for most CPU-intensive benchmarks is
negligible. For I/O intensive ones like the web servers, the overhead
is also rather small at about 2%. This is expected as the recording
mostly happens when there is a syscall, a relatively infrequent event
given the speed of today’s computers. Our optimization of the stor-
age consumption for R&R allows Ravel to avoid recording the data

4SPEC CPU2006 has dropped the support to FreeBSD for a long
time. There are many compatibility issues that prevent some bench-
marks from compiling despite all the compilers we tried (including
the official Clang/LLVM compiler and several versions of gcc).

that can be recovered from the environment, such as HTML files.
However, Ravel has to record the data read from the random pool
because they cannot be reproduced.

4. DISCUSSION

In this section, we discuss potential ways to improve the design
and implementation of Ravel and the future work. First, Ravel
focuses on pinpointing vulnerabilities from a recorded attack. The
attack detector plays an important role in the overall effectiveness of
Ravel. Ravel has been designed not to rely on details of the detector
— its only input is a recorded execution history that is known to
contain some attacks. Therefore, it is possible to integrate a wide
range of attack detection techniques. For example, recent advances
in control-flow integrity [52, 61, 62] make it a practical choice as
the attack detector. Effective and low-overhead attack detection for
data-only and other emerging attacks is still an ongoing research
topic.

Second, Ravel uses R&R to detach the time-consuming vulnera-
bility locator from the production system and make attacks repro-
ducible for offline analyses. Ravel’s R&R is an always-on kernel-
based R&R system for processes. This imposes strict requirements
in its performance and storage overhead. In the future, we plan
to integrate more techniques in eidetic systems [23] to optimize
the storage for long-running processes. As expected, this will in-
crease the performance overhead (eidetic systems have about 8% of
overhead). Another challenge is how to reduce the replay time for
long-running processes even though replaying is much faster than
recording (because most syscalls are not re-executed). To address
that, we may periodically checkpoint the process and start replaying
at the nearest checkpoints. The challenge is then how to locate
vulnerabilities from a potentially incomplete execution history.

Third, by design, Ravel can only locate attacks that change the
data flow. It is ineffective against attacks that do not do so. For
example, SQL injections can be leveraged to execute malicious SQL
queries without exploiting any flaws in the SQL server, and vulner-
abilities in Java programs can be exploited without compromising
the Java virtual machine. Other examples include attacks that mis-
use the benign/obsolete program features for malicious purposes,
such as Shellshock [65]. Moreover, the design of Ravel may cause
imprecision in the analyses. First, we use dynamic analysis to gen-
erate the program’s data-flow graph (DFG). The incompleteness in
the DFG may lead to false positives. We plan to explore methods to
increase the code coverage of the dynamic analysis to build better
DFGs [58]. Second, Ravel relies on heuristics to refine the loca-
tions of vulnerabilities, such as the signs of integers. Heuristics
is by nature imprecise and may introduce both false positives and
false negatives. Third, Ravel keeps track of memory lifetime to aid
the detection of double-frees and use-after-frees. This method is
less effective for programs that use custom memory allocators. We
could use (more) heuristics to automatically detect custom memory
allocators.

5. RELATED WORK

In this section, we present and compare with the related work
regarding attacks and defenses of memory-based vulnerabilities.

Attack detection and exploit mitigation: the first category of
the related work is a long stream of research in the attack detection
and exploit mitigation [1, 3, 4, 6, 11, 21, 22, 29, 33, 51, 10, 63, 64,
606, 67] (a recent survey paper provides a comprehensive overview
of these systems [59]). For example, W @ X [22] and ASLR [60]
are two widely adopted exploit mitigation techniques. W & X pre-
vents executing the data and modifying the code. However, it can



be bypassed by reusing the existing code, such as return-to-libc
and return-orient programming (ROP) [8, 54]. Many systems have
been proposed to defeat ROP, say, by diversifying the program’s
code [42]. For example, ASLR randomizes the process’ address
space layout to make it harder for attackers to locate the reusable
code. ASLR is susceptible to information leaks [56]. Many im-
provements to ASLR have been proposed to address this problem
by making ASLR more fine-grained [33, 51, 64], preventing code
from being read [4, 15], and real-time re-randomization [6, 14].
Nevertheless, W @ X and ASLR have significantly raised the bar for
reliable exploits. These defenses can be integrated with Ravel to
enable the defense in depth. They will also improve Ravel’s attack
detection since they make exploits crash more often.

From another perspective, control-flow integrity (CFI [1]) and
data-flow integrity (DFI [11]) provide a comprehensive protection
against control-flow and data-flow attacks, respectively. They en-
force the security policy that run-time control flow/data flow must
follow the program’s control-flow/data-flow graph. CFI is an ef-
fective defense against most control-flow attacks. DFI has an even
broader coverage because it can also detect data-only attacks. These
two techniques have inspired a lot of related systems, including
Ravel [21, 29, 57, 66, 67]. One of their focuses is to minimize the
performance overhead so that they can be practically deployed [57,
66]. For example, Kenali enforces DFI for the kernel’s access con-
trol system [57]. It automatically infers the critical data that need
protection and enforces DFI for that data. CFI as a generic attack
detection technique can be integrated into Ravel. Ravel’s archi-
tecture can be easily extended with all kinds of attack detection
techniques. Ravel’s data-flow analysis extends DFI with analy-
ses to locate and refine underlying vulnerabilities. As we have
demonstrated, a data-flow violation does not always coincide with
the exploited vulnerabilities. Moreover, full DFI enforcement is
still prohibitively expensive [11]. Ravel’s use of R&R detaches
the (high-overhead) vulnerability locator from production systems.
WIT (Write Integrity Testing) is another effective defense against
memory errors [3]. It enforces a policy in which each instruction
can only write to the set of statically-determined, authorized objects.
WIT reduces its overhead by checking only memory writes but not
reads. Consequently, WIT cannot detect read-only vulnerabilities
such as information leaks. Ravel checks both memory reads and
writes for vulnerabilities

Data-only attacks: as control-flow hijacking becomes more
challenging, more attention is paid to data-only attacks (or non-
control-data attacks) [13, 35, 36]. Data-only attacks do not change
the control flow. They instead manipulate sensitive run-time data to
indirectly control the program’s execution, escalate privileges, leak
information, etc. Recently, data-oriented programming (DOP) [36]
demonstrates that attackers can systemically construct expressive
non-control-data exploits, and a large percentage of the evaluated
real-world programs have gadgets to simulate arbitrary computa-
tions. Effective, low-overhead detection of data-only attacks is a
challenging problem. DFI can detect many but not all data-only
attacks (i.e., it cannot detect attacks that do not change the def-
use relations). Likewise, Ravel can also locate many but not all
data-only vulnerabilities.

Vulnerability/bug discovery: There are also many efforts to dis-
cover vulnerabilities through dynamic and static analysis [5, 25, 55,
58]. For example, fuzz testing is a popular, practical approach to
discover software vulnerabilities. It tries to crash a program by feed-
ing it random inputs. However, fuzz testing often ends with a poor
code coverage. To address that, Driller uses concolic execution
to guide the fuzzer when it stops [58]. To evaluate vulnerabil-
ity discovery tools, LAVA [25] proposes a dynamic taint-analysis

based approach to generate large ground-truth vulnerability cor-
pora on demand. Gist is a tool to diagnose program failures (i.e.,
crashes) [37]. Specifically, it traces the program execution with
Intel’s processor tracing technology and combines static program
slicing and dynamic analysis to find root causes of program failures.
Ravel shares the same vision as Gist, but it takes a very different
approach because of its different focus — Gist focuses on solving
program failures, while Ravel focuses on locating vulnerabilities.
Many vulnerabilities such as buffer overflows and information leaks
can be exploited without causing program failures, rendering Gist
ineffective in locating vulnerabilities.

Record & replay: the last category of related work is record &
replay (R&R) [23, 31, 38,41, 53]. Inparticular, Arnold is an always-
on R&R system. It enables an interesting concept called the eidetic
system in which the complete execution history of the system is kept
and can be queried for information about the past execution [23]. We
adopt some techniques of Arnold to reduce Ravel’s performance and
storage overhead. Ravel’s R&R is different from other R&R systems
with its instrumented replay. R&R has a variety of interesting
usages including software debugging and intrusion detection. For
example, BackTracker can reconstruct a past intrusion by building
an attack dependence graph backwards [38]. Ravel also relies on
R&R to reproduce an attack, but it aims at locating vulnerabilities.
BackTracker works on the high-level objects such as processes and
files; while Ravel works on the low-level memory accesses with
different analyses.

6. SUMMARY

We have presented the design and evaluation of Ravel, a practical
system to pinpoint exploited vulnerabilities. Specifically, it records
the execution history of a production program and simultaneously
monitors its execution for attacks. If an attack is detected, the
execution history is replayed with instrumentation to locate the
exploited vulnerabilities. With its data-flow and other analyses,
Ravel can pinpoint many different types of memory vulnerabilities,
such as buffer (heap) overflows, integer errors, and information
leaks. Our evaluation shows that Ravel is effective and incurs low
performance overhead.

7. ACKNOWLEDGMENTS

We would like to thank our shepherd Mathias Payer and the
anonymous reviewers for their insightful comments that greatly
helped improve the presentation of this paper. This work was sup-
ported in part by the US National Science Foundation (NSF) under
Grant 1453020. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

8. REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-Flow Integrity: Principles, Implementations, and
Applications. In Proceedings of the 12th ACM Conference on
Computer and Communications Security, November 2005.
S. V. Adve, M. D. Hill, B. P. Miller, and R. H. Netzer.
Detecting Data Races on Weak Memory Systems. ACM
SIGARCH Computer Architecture News, 19(3):234-243,
1991.

P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing Memory Error Exploits with WIT. In
Proceedings of the 29th IEEE Symposium on Security and
Privacy, May 2008.

(2]

(3]



[4] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Niirnberger,
and J. Pewny. You Can Run but You Can’t Read: Preventing
Disclosure Exploits in Executable Code. In Proceedings of
the 21st ACM Conference on Computer and Communications
Security, 2014.

[5] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier. A Taint Based
Approach for Smart Fuzzing. In Proceedings of the IEEE
Fifth International Conference on Software Testing,
Verification and Validation, pages 818-825. IEEE, 2012.

[6] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and
H. Okhravi. Timely Rerandomization for Mitigating Memory
Disclosures. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security, pages 268-279.
ACM, 2015.

[7]1 A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking Blind. In Proceedings of the 35th IEEE
Symposium on Security and Privacy, pages 227-242. IEEE,
2014.

[8] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
Good Instructions Go Bad: Generalizing Return-Oriented
Programming to RISC. In Proceedings of the 15th ACM
Conference on Computer and Communications Security,
October 2008.

[9] N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash,

P. Larsen, and M. Franz. Control-flow Integrity: Precision,
Security, and Performance. ACM Computing Surveys, 2017.

[10] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity. In Proceedings of the 24th USENIX
Security Symposium, volume 14, pages 28-38, 2015.

[11] M. Castro, M. Costa, and T. Harris. Securing Software by
Enforcing Data-flow Integrity. In Proceedings of the 7th
Symposium on Operating Systems Design and
Implementation, OSDI *06, 2006.

[12] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer.
Defeating Memory Corruption Attacks via Pointer
Taintedness Detection. In Proceedings of the 2005
International Conference on Dependable Systems and
Networks, pages 378-387. IEEE, 2005.

[13] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-Control-Data Attacks Are Realistic Threats. In
Proceedings of the 14th USENIX Security Symposium,
August 2005.

[14] Y. Chen, Z. Wang, D. Whalley, and L. Lu. Remix:
On-demand Live Randomization. In Proceedings of the Sixth
ACM Conference on Data and Application Security and
Privacy, pages 50-61, New Orelans, LA, Mar 2016. ACM.

[15] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz. Readactor:
Practical Code Randomization Resilient to Memory
Disclosure. In 36th IEEE Symposium on Security and
Privacy (Oakland), May 2015.

[16] CVE-2013-2028. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-2028.

[17] CVE-2015-3864. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-3864.

[18] DARPA. Cyber Grand Challenge. https://cgc.darpa.mil.

[19] Memory Protection Technologies.
http://technet.microsoft.com/en-us/library/bb457155 .aspx.

[20] x86 NX support. http://lwn.net/Articles/87814/.

[21] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

Stitching the Gadgets: On the Ineffectiveness of
Coarse-Grained Control-Flow Integrity Protection. In
Proceedings of the 23rd USENIX Conference on Security,
2014.

Data Execution Prevention.
http://en.wikipedia.org/wiki/Data_Execution_Prevention.
D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen.
Eidetic Systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and
Implementation, 2014.

W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding
Integer Overflow in C/C++. ACM Transactions on Software
Engineering and Methodology, 25(1):2, 2015.

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti,
W. Robertson, F. Ulrich, and R. Whelan. LAVA: Large-scale
Automated Vulnerability Addition. In Proceedings of the
37th IEEE Symposium on Security and Privacy, May 2016.
M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and
X. Yan. Synthesizing Near-optimal Malware Specifications
from Suspicious Behaviors. In Proceedings of the 31th IEEE
Symposium on Security and Privacy, pages 45-60. IEEE,
2010.

T. Garfinkel. Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools. In
Proceedings of the 20th Annual Network and Distributed
Systems Security Symposium, February 2003.

T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A
Delegating Architecture for Secure System Call
Interposition. In Proceedings of the 10th Network and
Distributed System Security Symposium, 2003.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of Control: Overcoming Control-Flow Integrity. In
Proceedings of the 35th IEEE Symposium on Security and
Privacy, 2014.

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
Secure Environment for Untrusted Helper Applications:
Confining the Wily Hacker. In Proceedings of the 6th
USENIX Security Symposium, 1996.

Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An Application-level Kernel
for Record and Replay. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation, 2008.

J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W.
Skorupka. Verifying Information Flow Goals in
Security-enhanced Linux. Journal of Computer Security,
13(1):115-134, 2005.

J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d My Gadgets Go? In Proceedings of
the 33rd IEEE Symposium on Security and Privacy, pages
571-585. IEEE, 2012.

S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
Detection Using Sequences of System Calls. Journal of
computer security, 6(3):151-180, 1998.

H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang.
Automatic Generation of Data-Oriented Exploits. In
Proceedings of the 24th USENIX Security Symposium, pages
177-192, 2015.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and

Z. Liang. Data-Oriented Programming: On the
Expressiveness of Non-Control Data Attacks. In Proceedings
of the 37th IEEE Symposium on Security and Privacy, May


https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
https://cgc.darpa.mil
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://lwn.net/Articles/87814/
http://en.wikipedia.org/wiki/Data_Execution_Prevention

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

[52]

[53]

2016.

B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and

G. Candea. Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-production Failures. In
Proceedings of the 25th Symposium on Operating Systems
Principles, pages 344-360. ACM, 2015.

S. T. King and P. M. Chen. Backtracking Intrusions. In
Proceedings of the 2003 Symposium on Operating Systems
Principles, October 2003.

A. P. Kosoresow and S. A. Hofmeyr. Intrusion Detection via
System Call Traces. IEEE software, 14(5):35, 1997.

C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the
Detection of Anomalous System Call Arguments. In
Proceedings of the 8th European Symposium on Research in
Computer Security, pages 326-343. Springer, 2003.

0. Laadan, N. Viennot, and J. Nieh. Transparent,
Lightweight Application Execution Replay on Commodity
Multiprocessor Operating Systems. In Proceedings of the
2010 International Conference on Measurement and
Modeling of Computer Systems, 2010.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok:
Automated Software Diversity. In Proceedings of the 35th
IEEE Symposium on Security and Privacy, pages 276-291.
IEEE, 2014.

W. Lee, S. J. Stolfo, et al. Data Mining Approaches for
Intrusion Detection. In Proceedings of the 7th USENIX
Security Symposium, 1998.

J. R. Levine. Linkers and Loaders. Morgan Kaufmann, San
Francisco, CA, 1999.

F. Maggi, M. Matteucci, and S. Zanero. Detecting Intrusions
Through System Call Sequence and Argument Analysis.
IEEE Transactions on Dependable and Secure Computing,
7(4):381-395, 2010.

D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous
System Call Detection. ACM Transactions on Information
and System Security, 9(1):61-93, 2006.

N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In ACM
Sigplan notices, volume 42, pages 89-100. ACM, 2007.

J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In Proceedings of the 12th
Network and Distributed System Security Symposium,
Feburary 2005.

NGINX. NGINX. https://www.nginx.com.

S. Palahan, D. Babi¢, S. Chaudhuri, and D. Kifer. Extraction
of Statistically Significant Malware Behaviors. In
Proceedings of the 29th Annual Computer Security
Applications Conference, pages 69-78. ACM, 2013.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing
the Gadgets: Hindering Return-Oriented Programming
Using In-place Code Randomization. In Proceedings of the
33rd IEEE Symposium on Security and Privacy, 2012.

M. Payer, A. Barresi, and T. R. Gross. Fine-grained
Control-flow Integrity through Binary Hardening. In
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 144-164.
Springer, 2015.

M. Ronsse and K. De Bosschere. RecPlay: A Fully
Integrated Practical Record/Replay System. ACM
Transactions on Computer Systems, 17(2), May 1999.

[54]

[55]

(561

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-Into-Libc without Function Calls (on the x86). In
Proceedings of the 14th ACM Conference on Computer and
Communications Security, October 2007.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and
G. Vigna. (State of) The Art of War: Offensive Techniques in
Binary Analysis . In Proceedings of the 37th IEEE
Symposium on Security and Privacy, May 2016.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,

C. Liebchen, and A.-R. Sadeghi. Just-in-time Code Reuse:
On the Effectiveness of Fine-grained Address Space Layout
Randomization. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 574-588. IEEE, 2013.

C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee.
Enforcing Kernel Security Invariants with Data Flow
Integrity. In Proceedings of the 23rd Network and
Distributed System Security Symposium, Feb 2016.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,

J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna.
Driller: Augmenting Fuzzing Through Selective Symbolic
Execution. In Proceedings of the 23rd Network and
Distributed System Security Symposium, Feb 2016.

L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal
War in Memory. In Proceedings of the 34th IEEE Symposium
on Security and Privacy, pages 48—62. IEEE, 2013.

P. Team. PaX Address Space Layout Randomization (ASLR),
2003.

V. van der Veen, D. Andriesse, E. Goktas, B. Gras,

L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida. Practical
Context-sensitive CFL. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 927-940. ACM, 2015.

V. van der Veen, E. Goktas, M. Contag, A. Pawoloski,

X. Chen, S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and
C. Giuffrida. A Tough Call: Mitigating Advanced
Code-reuse Attacks at the Binary Level. In Proceedings of
the 37th IEEE Symposium on Security and Privacy, pages
934-953. IEEE, 2016.

X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou. SecPod: a
Framework for Virtualization-based Security Systems. In
Proceedings of the 2015 USENIX Annual Technical
Conference, pages 347-360, 2015.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
Stirring: Self-randomizing Instruction Addresses of Legacy
x86 Binary Code. In Proceedings of the 19th ACM
Conference on Computer and Communications Security,
2012.

Wikipedia. Shellshock (software bug).
https://en.wikipedia.org/wiki/Shellshock_(software_bug).
C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,

S. McCamant, D. Song, and W. Zou. Practical Control Flow
Integrity and Randomization for Binary Executables. In
Proceedings of the 34th IEEE Symposium on Security and
Privacy, 2013.

M. Zhang and R. Sekar. Control Flow Integrity for COTS
Binaries. In Proceedings of the 22nd USENIX Security
Symposium, 2013.


https://www.nginx.com
https://en.wikipedia.org/wiki/Shellshock_(software_bug)

	Introduction
	Design of Ravel
	System Overview
	Detecting Attacks
	Record and Replay
	Record
	Replay with Instrumentation

	Pinpointing Vulnerabilities
	Data-Flow Analysis
	Integer Errors
	Use-After-Frees and Double-Frees
	Race Conditions

	Prototype Efforts

	Evaluation
	Effectiveness
	CVE-2013-2028 of NGINX
	CVE-2014-0160 (Heartbleed)
	Experiments with CGC Challenges

	Performance

	Discussion
	Related Work
	Summary
	Acknowledgments
	References

