
Java Console Input/Output
The Basics

Lecture 3
CGS 3416 Spring 2017

January 18, 2017

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 1 / 13



Console Output

System.out – out is a PrintStream object, a static data member of
class System. This represents standard output

Use this object to call functions print, println, and even printf

print() – converts parameter to a string (if not already one) and prints
it out
println() – prints parameter, and also prints a newline after
printf – works like in C programming. Formatted string, followed by
parameters to ”fill in the blanks”

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 2 / 13



Sample Calls

System.out.print("Hello, World"); // no newline

System.out.println("Hello\n\nWorld");

// adds newline at end

int feet = 6, inches = 3;

System.out.printf("I am %d feet and %d inches tall\n",

feet, inches);

// just like printf in C

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 3 / 13



Concatenation

If the + operator is used with at least one string operand, then the
operation is string concatenation.

Other types will be auto-converted to type string if needed

System.out.println("The number of states in the U.S.

is " + 50);

int sides = 8;

System.out.println("Number of sides on a stop

sign = " + sides);

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 4 / 13



Formatting with printf

When printing values with decimal precision it is often useful to be
able to specify how many decimal places should be printed

The C-style printf function provides an easy way to format decimal
precision

Format of printf calls:
System.out.printf(format string, list of parameters);

The format string is a string in quotes, with special format symbols
inserted:

%d specifies an integer
%c specifies a character
%s specifies a String
%f specifies a floating point type

Consider the format symbols to be “fill-in-the-blanks” spots in the
format string. These are filled in with the list of parameters

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 5 / 13



printf Example

int numStudents = 25;

char letterGrade = ’A’;

double gpa = 3.95;

System.out.printf("There are %d students\n",

numStudents);

System.out.printf("Bobby’s course grade was %c, and

his GPA is %f\n", letterGrade, gpa);

// The output from this example is:

// There are 25 students

// Bobby’s course grade was A, and his GPA is 3.950000

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 6 / 13



printf Example

To specify how many decimal places for the output of a floating point
value, modify the ‘%f’ symbol in this format:

%.Nf // where N is the number of decimal places

Example:

double gpa = 3.275;

double PI = 3.1415;

System.out.printf("gpa = %.2f", gpa);

System.out.printf("PI = %.3f", PI);

// Output is:

// gpa = 3.28

// PI = 3.142

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 7 / 13



Console Input

Before Java version 1.5.0, console input was harder. Since 1.5.0, we
have the Scanner class

class Scanner is a text parser. Contains easy methods for grabbing
different types of input

System.in is an InputStream object that represents standard input

To use Scanner to read from standard input:
1 Put the appropriate import statement at the top of the file:

import java.util.Scanner;
2 Create a Scanner object
3 Pass in System.in into the Scanner constructor, when creating the

object

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 8 / 13



Example

import java.util.Scanner;

// yadda yadda

Scanner input = new Scanner(System.in);

// now we can use the object to read data from

// the keyboard (stdin).

// Some sample calls:

int x = input.nextInt();

double y = input.nextDouble();

String s = input.next();

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 9 / 13



Reading different types of input

Different data types require the use of different methods available in the
Scanner class. These are available only for primitive types and Strings.
For the following table, assume the Scanner object is called "in".

Type Reading in one variable

byte byte b = in.nextByte();
short short s = in.nextShort();
int int i = in.nextInt();
long long l = in.nextLong();
float float f = in.nextFloat();
double double d = in.nextDouble();
boolean boolean bool = in.nextBoolean();
String String st = in.next();

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 10 / 13



Reading in chars

The Scanner class does not have a method for reading in characters.

However, there are several ways to read in a single character using the
Scanner class.

One such way is to read in a String and then grab the first character.

String st = in.next();

char c = st.getCharAt(0);

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 11 / 13



Checking for more input

We usually want to take a peek into the Scanner buffer to see if an
input token exists before we scan it in.

This is to avoid exceptions/errors that occur when we try to read in
data that doesn’t exist or data of incompatible types.

Just like the reading methods, the Scanner class provides methods
that check the Scanner buffer for data of a particular type.

All of these methods return a boolean, where ‘true’ indicates data
exists.

These methods are very useful when we don’t know the length of the
input and have to read indefinitely from the Scanner.

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 12 / 13



Scanner methods to check for tokens

Type Checking for data of that type

byte in.hasNextByte();
short in.hasNextShort();
int in.hasNextInt();
long in.hasNextLong();
float in.hasNextFloat();
double in.hasNextDouble();
boolean in.hasNextBoolean();
String in.Next();

Lecture 3CGS 3416 Spring 2017 I/O January 18, 2017 13 / 13


