
Basics of Java Programming

Lecture 2
CGS 3416 Spring 2016

January 9, 2017



Components of a Java Program

statements - A statement is some action or sequence of actions,
given as a command in code. A statement ends with a semi-colon (;).

blocks - A block is a set of statements enclosed in set braces { }.
Blocks can be nested.

classes - A class is a blueprint for building objects in Java.
I Every Java program has at least one class.
I Programmers can define new classes
I There are many pre-built classes in the Java SDK

methods - A method is a function (i.e. subroutine) that belongs to a
class.

I In Java, all functions are methods, meaning they are always contained
in some class



Components of a Java Program

A Java program can be made up of multiple classes, spread across
multiple code files.

It will typically make use of some SDK libraries as well

The main method - Every Java application must have a main
method, which defines where the program begins.

In Java, the main method belongs to a class. Any class can have a
main method. The main method looks like this:

public static void main (String [] args)

{
// statements

}



Java Source Code Files

The Java compiler imposes some specific rules on the naming of source
code files.

A Java source code file has a base name, along with the file extension
“.java”

A source file can contain one or more classes (and/or interfaces, to be
discussed later in the course)

If there are multiple classes in a code file, one and only one of them
should be declared to be public

I The base name for the filename must match the name of the class that
is declared to be public in the file.

I If there’s only one class in the file, the filename must match that class
name

I class names in Java are case sensitive. Be careful – in Windows, for
example, filenames are not case sensitive, but in Unix, they are.



Java Source Code Files

This class goes in “Yadda.java”

class Yadda

{
public static void main(String[] args)

{
System.out.println("Yadda yadda yadda");

}
}



Java Source Code Files

This file must be named “Daffy.java”

class Bugs

{
public static void main(String[] args)

{
System.out.println("What’s up, doc?");

}
}

public class Daffy

{
public static void main(String[] args)

{
System.out.println("You’re dethpicable.");

}
}



Statements

reserved words - words that have pre-defined meanings in the Java
language

identifiers - words that are created by programmers for names of
variables, functions, classes, etc.

literals - literal values written in code, like strings or numbers
I integer literal - an actual integer number written in code (4, -10, 18)
I float literal - an actual decimal number written in code (4.5, -12.9, 5.0)
I character literal - a character in single quotes: (’F’, ’a’, ”)
I string literal - a string in double quotes: (”Hello”, ”Bye”, ”Wow!”)

operators - special symbols that perform certain actions on their
operands

I A unary operator has one operand
I A binary operator has two operands
I A ternary operator has three operands (there’s only one of these)

Calls to methods (functions)



Escape Sequences

String and character literals can contain special escape sequences that
represent single characters that cannot be represented with a single
character in code.

Escape Sequence Meaning

\n Newline
\t Tab
\b Backspace
\r Carriage Return
\“ Double Quote
\‘ Single Quote
\\ Backslash



Comments

Comments are used to improve the readability of code. Comments are
ignored by the compiler. There are two styles of comments in Java:

block style - comment enclosed in a block that starts with /* and
ends with */

/* This is a comment */

Line style - comment follows the double slash marker //. Everything
after this mark, to the end of the line, is a comment.

int x; // This is a comment

x = 3; // This is a comment



Variables

Variables are used to store data. Every Java variable has a:

Name – chosen by the programmer (aka identifier)

Type – specified in the declaration of the variable

Size – determined by the type

Value – the data stored in the variable’s memory location



Identifiers

Identifiers are the names for things (variables, functions, etc) in the
language.
Some identifiers are built-in, and others can be created by the
programmer.

User-defined identifiers can consist of letters, digits, underscores, and
the dollar-sign $

Must start with a non-digit

Identifiers are case sensitive (count and Count are different variables)

Reserved words (keywords) cannot be used as identifiers

an identifier can be any length



Style-conventions (for identifiers)

While you can legally pick any name for a variable that follows the rules,
it’s also a good idea to follow common programming conventions, for
easy-to-read code.

Here are some conventions used in the Java SDK
I class and interface names start with an uppercase letter
I variable names and method names start with a lowercase letter
I constants are usually in ALL CAPS
I When using names that are made up of multiple words, capitalize the

first letter of each word after the first. Example:
numberOfMathStudents

In addition, it’s good to pick mostly meaningful identifiers, so that it’s
easy to remember what each is for

I numStudents, firstName // good
I a, ns, fn // not so good



Primitive Data Types

Java has a small set of what are known as primitives. These are basic data
types that are predefined for the language.

char - used for storing single characters (letters, digits, special
symbols, etc)

I 16 bits, unicode character set.

boolean - has two possible values, true or false

integer types - for storage of integer values
I byte - 8 bits
I short - 16 bits
I int - 32 bits
I long - 64 bits

floating point types - for storage of decimal numbers (i.e. a
fractional part after the decimal)

I float - 32 bits
I double - 64 bits



Declaring Variables

Inside a block, variables must be declared before they can be used in
later statements in the block

Declaration format: typeName variableName1, variableName2, ...;

int numStudents; // variable of type integer

double weight; // variable of type double

char letter; // variable of type character

boolean flag; // variable of type boolean

// Examples of multiple variables of the same type in

// single declaration statements

int test1, test2, finalExam;

double average, gpa;



Initializing Variables

To declare a variable is to tell the compiler it exists, and to reserve
memory for it

To initialize a variable is to load a value into it for the first time

One common way to initialize variables is with an assignment
statement. Examples:

int numStudents;

double weight;

char letter;

numStudents = 10;

weight = 160.35;

letter = ’A’;



Initializing Variables

Variables of built-in types can be declared and initialized on the same line,
as well

int numStudents = 10;

double weight = 160.35;

char letter = ’A’;

int test1 = 96, test2 = 83, finalExam = 91;

double x = 1.2, y = 2.4, z = 12.9;



Constant Variables

(Woohoo! An oxymoron!) A variable can be declared constant by using
the keyword final

final double PI = 3.14159;

After this, PI cannot be changed. The following would not work:
PI = 15;



Type Conversions

When working with mixed primitive types, conversions can take one of two
forms:

Automatic type conversion: when appropriate, the complier will
automatically convert a smaller numeric type to a larger one (where
the floating point types are always considered ”larger” than the
integer types).

Explicit cast operations: for all other conversions, the programmer
must specify with a cast operation. To cast, put the type in
parentheses before the expression whose value you are casting.



Type Conversions

int i1 = 5, i2;

short s1 = 3;

double d1 = 23.5, d2;

float f1 = 12.3f;

byte b1 = 10;

d2 = i1; // automatically allowed

i1 = b1; // automatically allowed

s1 = (short)i1; // requires cast operation (some data

may be lost)

i2 = (int)d1; // requires cast operation (decimal data

may be lost)

d2 = f1 + d1; // automatically allowed

i2 = b1 + s1; // automatically allowed



Operators

Special built-in symbols that have functionality, and work on operands

operand – an input to an operator

Arity - how many operands an operator takes
I unary operator – has one operand
I binary operator – has two operands
I ternary operator – has three operands

Examples:
int x, y = 5, z;

z = 10; // assignment operator (binary)

x = y + z; // addition (binary operator)

x = -y; // -y is a unary operation (negation)

x++; // unary (increment)



Operators

cascading - linking of multiple operators, especially of related
categories, together in a single statement:

x = a + b + c - d + e; // arithmetic operators

x = y = z = 3; //assignment operators

This works because the result of one operation sends back the answer
(i.e. a return value) in its place, to be used in the next piece of the
statement. In the above, (a + b) happens first, then the answer
becomes the first operand in the next + operation.

Precedence - rules specifying which operators come first in a
statement containing multiple operators

x = a + b * c; // b * c happens first,

// since * has higher precedence than +

Associativity - rules specifying which operators are evaluated first
when they have the same level of precedence.
Most (but not all) operators associate from left to right.



Assignment Operator

Value on the right side (R-value) is assigned to (i.e. stored in) the
location (variable) on the left side (L-value)

I R-value – any expression that evaluates to a single value (name comes
from ”right” side of assignment operator)

I L-value – A storage location! (not any old expression). A variable or a
reference to a location. (name comes from ”left” side of assignment
operator

I Typical usage: variable name = expression

The assignment operator returns the L-value (which now stores the
new value).
Examples

x = 5;

y = 10.3;

z = x + y; // right side can be an expression

a + 3 = b; // ILLEGAL! Left side must be a variable



Assignment Operator

Associates right-to-left
x = y = z = 5; // z = 5 evaluated first, returns z

Use appropriate types when assigning values to variables:
int x;

x = 5843; // assigning integers to int variables

double a;

a = 12.98; //assign decimal numbers to type double

float c;

c = 12.98f; // ’f’ indicates float

char letter;

letter = ’Z’; //assign character literals to char

boolean flag;

flag = true;

Be careful to not confuse assignment = with comparison ==



Arithmetic Operators

Name Symbol Arity Usage

Add + Binary x + y
Subtract - Binary x - y
Multiply * Binary x * y
Divide / Binary x / y

Modulus % Binary x % y
Minus - Unary - x

An operation on two operands of the same type returns the same type

An operation on mixed primitive types (if compatible) returns the
”larger” type

Floating point types are ”larger” than integer types, because no data
is lost converting from integer to decimal precision.

int x = 5;

double y = 3.6;

z = x + y; // what does z need to be?



Arithmetic Operators

Division is a special case

For types ‘float’ and ‘double’, the / operator gives the standard
decimal answer

double x = 19.0, y = 5.0, z;

z = x / y; // z is now 3.8

For integer types, / gives the quotient, and % gives the remainder (as
in long division)

int x = 19, y = 5, q, r;

q = x / y; // q is 3

r = x % y; // r is 4



Operator Precedence

Arithmetic has usual precedence
1 parentheses
2 Unary minus
3 *, /, and %
4 + and -
5 operators on same level associate left to right

Many different levels of operator precedence

When in doubt, can always use parentheses

Example:
z = a - b * -c + d / (e - f);

7 operators in this statement
What order are they evaluated in?



Some short-cut assignment operators (with arithmetic)

v += e; means v = v + e;

v -= e; means v = v - e;

v *= e; means v = v * e;

v /= e; means v = v / e;

v %= e; means v = v % e;



Increment and Decrement Operators

++x; // pre-increment (returns reference to new x)

x++; // post-increment (returns value of old x)

// shortcuts for x = x + 1

--x; // pre-decrement

x--; // post-decrement

// shortcuts for x = x - 1



Increment and Decrement Operators

Pre-increment: incrementing is done before the value of x is used in
the rest of the expression

Post-increment: incrementing is done after the value of x is used in
the rest of the expression

Note - this only matters if the variable is actually used in another
expression. These two statements by themselves have the same effect:

x++;

++x;

Examples
int x = 5, count = 7;

result = x * ++count; // result = 40, count = 8

int x = 5, count = 7;

result = x * count++; // result = 35, count = 8


