Assignment 2: Date COP3330 Fall 2017
Due: Friday, October 06, 2017 at 11:59 PM

Objective

This assignment will provide further practice with implementing classes.

Task

For this assignment you will write a class called Date in the files date.h and date. cpp for creating
and using objects that will store valid dates of the year.

This class should be portable so it should work with any up-to-date C++ compiler. Make sure that it
works with g++ on 1inprog before you hand it in. You should write some test programs of your own
to test the functionality of the class.

Program Details and Requirements

An object of type Date should represent a calendar date in terms of month, day, and year as on a 12
month A.D. calendar. The valid months are January through December, a valid day must correspond to
a valid day for the given month, and the year must be a positive number. Your object should also store a
format setting to be used for display of dates to the screen. There will be more than one possible
format. The class features (public interface) should work exactly as specified regardless of what
program might be using Date objects.

For purposes of easy input (from keyboard or into functions), date values will be specified with
integers. Month values will be 1 for January, 2 for February, ..., and 12 for December. A valid day
value will be an integer between 1 and the number of days in the month. Valid year values are positive
numbers.

Your Date class must provide the following services (i.e. member functions) in its public section. These
functions will make up the interface of the Date class. Make sure you use function prototypes as
specified here. You may write any other private functions you feel necessary, but the public interface
must include all of the functionality described here.

Public Interface

1. Constructor
The Date class should have a constructor that allows the user to specify the values for the
month, day, and year using integer values. If any of the values would result in an invalid date,
the constructor should throw out the erroneous information and initialize the object to represent
1/1/2000 (January 1, 2000) instead. You should also allow a Date object to be declared without
specified values in which case it should initialize to 1/1/2000.

Examples: These declarations should be legal and the comment gives the initialized date

Date
Date
Date

2. void

1992);

di;

a2 (3, 4,
d3 (13, 30,
Input ()

// initializes to Jan 1, 2000

// initializes to March 4, 1992

1990); // invalid month, initializes to Jan 1, 2000 instead

This function should prompt the user to enter a date and then allow the user to input a date from
the keyboard. User input is expected to be in the format month/day/year, where month,
day, and year are integer values. Whenever the user attempts to enter an invalid date, the Input
function should display an appropriate error message (e.g. “Invalid date. Try again: “) and make
the user reenter the whole date. You may assume that the user entry will always be of the form
M/D/Y where M, D, and Y are integers, and the slash characters are always present.

Examples:

Legal: 1/4/2000

Illegal: 13/12/1985
3. void Show ()

2/28/1996 12/31/1845

11/31/2002 8/30/-2000

This function should simply output the date to the screen. There will be more than one possible
format for this output however, and your class will need to store a format setting. The Show
function should use the format setting to determine the output. When a Date object is create, the
format setting should start out at the Default setting. The possible formats are shown in the

following table:

Name Format Example |Explanation

Default M/D/Y 10/4/1998 | This will look like the input from the Input function. Print the
month, day, and year as integer values

Two-Digit |mm/dd/yy 10/04/98 | Fixed size format in which the month, day, and year values are
always 2 digits.
Some values may need to be padded with a leading zero, and
the year values always show the low 2 digits

Long month D, Y |Oct4, 1998 |This display format should show the abbreviated month name,
then the day, and the full year.
Month abbreviations are:
Jan, Feb, Mar, Apr, May, June, July, Aug, Sept, Oct, Nov, Dec

4. bool Set (int m,
This function should set the date to the specified values of month, day, and year respectively. If
the resulting date is an invalid date, the operation should abort (i.e. the existing stored date
should not be changed). This function should return t rue for success and false for failure.

5. int GetMonth ()

int GetDay ()
int GetYear ()

These are accessor functions and should return to the caller the month, day, and year
respectively.

int d, int vy)

6. bool SetFormat (char f)
This function allows the caller to change the format setting. The setting should be adjusted
inside the object based on the character code passed in. This means that the future uses of the
Show function will display in this given format until the format is changed.

Valid setting codes that can be passed in:
D = Default format

T = Two-Digit format

L = Long format

7. void Increment (int numDays = 1)
This function should move the date forward by the number of calendar days given in the
argument. Default value on the parameter is 1 day.

Examples:

Date di1 (10, 31, 1998); // Oct31, 1998

Date d2 (6, 29, 1950); // June?29, 1950
dl.Increment (); // dlisnow Nov 1, 1998
d2.Increment (5); // d2is now July 4, 1950

8. int Compare (const Date& d)
This function should compare two Date objects (the calling object and the parameter) without
modifying either object. It returns one of the following:
-1, if the calling object comes first chronologically
0, if the objects are the same date
1, if the parameter object comes first chronologically

Examples:

Date d1 (12, 25, 2003); // Dec?25, 2003

Date d2 (5, 18, 2002); // May 18, 2002

dl.Compare (d2) ; // returns 1 since d2 comes first and is the parameter
d2.Compare (dl) ; // returns -1 since d2 comes first and is the calling object

General Requirements

* No global variables, other than constants

* All member data of your class must be private

* The const qualifier should be used on any member functions where it is appropriate

* The only libraries that may be used in these class files are <iostream>, <iomanip>, and
<string>. While this class can be written without the string class, you may use it to store
words like “January”

* Do not use language or library features that are C++11 only
* There are some <string> class functions that are C++-only but they are not needed here
* You can check which ones are by looking at library references at www.cplusplus.com

* You only need to do error-checking that is specified in the descriptions above. If something is
not specified (e.g. user entering a letter where a number is expected), you may assume that part
of the input will be appropriate.

http://www.cplusplus.com/

User input and screen output should only be done where described. Do not add any extraneous
input/output

You are not required to handle leap years in this class. You may make the general assumption
that a year always has 365 days.

When you write source code, it should be readable and well documented

Your date. h file should contain the class declaration only. The date . cpp file should
contain the member function definitions.

If you change formatting properties of the cout stream object from inside a member function,
you must put it back the way it was when your function started. You do not want to mess up
anybody else’s outputs (e.g. main function calling your features).

Testing Your Class

You will need to test your class which means you will need to write one or more main programs that
will call upon the functionality (i.e. the public member functions) of the class and exercise all of the
different cases for each function. You should not submit these test programs, but you should write them
to verify your solution works correctly. I included a sample driver to get you started, but it does not test
every possible test case.

Submitting

Archive your date.h, date.cpp, and README files into a simple tar ball (no compression). Submit
to the assignment 2 link on blackboard. Make sure the submitted files are named as specified by the
syllabus and this writeup.

General Advice

Make sure to double check your blackboard submission to make sure everything works when
downloaded.

Email a copy of your finished homework files to your own FSU account. This email will have a
time stamp that shows when they were sent and will also serve as a backup. Useful in case
something happens to blackboard.

Periodically (e.g. nightly) make a backup of your assignment to another machine (e.g. personal
computer, linprog, email). Computers die and accidents happen, having a backup prevents you
from having to start from scratch.

Make sure to include the README file as specified in the assignment syllabus

http://ww?2.cs.fsu.edu/~dennis/teaching/2017 fall cop3330/docs/syllabus.pdf

Extra Credit

1. Make your Date class handle leap years where appropriate. Remember that a leap year has one

extra day in it (Feb 29). A year is a leap year if it is divisible by 4, except for century years
(years ending in 00). A century year is a leap year only if it is divisible by 400 (e.g. 2000 is a
leap year but 1900 is not).

The Julian Day for a calendar year is defined as the number of the day in the calendar year.
There are 365 days in a regular calendar year, so each day is numbered in order (1 — 365). For

http://ww2.cs.fsu.edu/~dennis/teaching/2017_fall_cop3330/docs/syllabus.pdf

instance, January 15 has a Julian date of 15, and February 10 has a Julian date of 41. Add in one
more formatting code (J for Julian Date) to be allowed by the Set Format function. This
setting should result in the output of a date in the Julian Date format, which should look like
YY-JJJ. The Julian Day will always be printed as a 3-digit number and the year as a 2-digit
number (last two digits).

Examples:
Feb 1, 1998 would print as 98-032
May 17, 2002 would print as 02-137

Assignment 2: Date COP3330 Fall 2017

Student Name: Grader:
Grade: Date Graded:
Description Earned |Possible | Comments
1. Private Data 10
2. Constructor 10
3. Input 10
4. Show 10
5. Set 10
6. GetMonth 2
7. GetDay 2
8. GetYear 2
9. SetFormat 4
10. Increment 10
11. Compare 10
12. README 10
13. Submission 10
Format
14. Leap Years +2
15. Julian Days +2
16. Leap Years +1
and Julian Days

	Assignment 2: Date COP3330 Fall 2017
	Due: Friday, October 06, 2017 at 11:59 PM
	Objective
	Task
	Program Details and Requirements
	Public Interface
	General Requirements
	Testing Your Class
	Submitting
	General Advice
	Extra Credit
	Assignment 2: Date COP3330 Fall 2017

