
Self-destructing Hard Drive

Ben Buzbee, Michael Backherms, Martin Brown

Project Description
This project is an extension of Sean Easton and Bobby Roy’s USB Boot Authentication project. A                             
uniquely keyed USB device needs to be inserted into the computer in order for Linux to boot. The                                 
serial number of this USB device is hardcoded into the Linux kernel. At boot time, the system                               
waits in a loop for the matching USB device to be inserted.

Our extension of this project was inspired by Mike Mitchell, a former Teaching Assistant for this                             
class and a member of the OS group at Florida State University. It includes a countdown timer                               
for entering the USB device. If this timer expires, or If the wrong device is inserted 3 times, we                                   
initiate the “self­destruct” sequence which starts another countdown timer. To abort the                     
self­destruct sequence, we employ an additional device connected via the parallel port. This                       
device can send signals to the port using 1) a big red button 2) a mailbox key on the left side and                                         
3) another on the right side of the big red button. These three signals need to be in the on                                     
position in order to abort the self­destruct sequence before the self­destruct timer expires. Once                         



the timer expires, a self­destruct signal is sent to the device via the parallel port. We only send                                 
the signal, to simulate the destruction which is the responsibility of Mike MItchell.

Our project has evolved over the weeks. Initially, we were seeking to initiate the self­destruct                           
sequence after counting x number of failed login attempts by the user. We discuss this further in                               
the Challenges section of this paper.

Motivation
Hollywood is not short of movies with a phrase along the lines of “... will self­destruct in 3, 2, 1.”                                     
In reality however, physically destroying a hard drive in an attempt to render it unreadable is not a                                 
common feature in hard drives from yesterday and today. We were also looking forward to the                             
challenge of experimenting with what we can do in the Linux kernel before boot, when all of the                                 
subsystems have not yet been loaded. Moreover, a project like this could potentially be featured                           
on hackaday.com.

Kernel Subsystems
Process management and device management work to some extent in these early stages of the                           
boot process. We weren’t able to launch our own processes however. And although we could                           
see the arduino device listed in /dev/ as /dev/ttyACM0, we were not able to read from or write to                                   
the device.

Related Work
In addition to the work of Easton and Roy, we’re aware of several other self­destructing drives.                             
Toshiba released a version of their self­encrypting hard drives in 2000 which invalidates the                         
drives security key when its power supply is turned off, rendering it indecipherable. Toshiba                         
argues that erasing the data takes hours, and that destroying the device requires physical effort                           
as well as time.

RunCore, a not­so­well­known maker of hard drives released a solid state drive which has two                           
physical buttons. A red button destroys the drive physically by applying a strong current to the                             
NAND flash memory. A green button overwrites the entire disk with random data, making the                           
data unrecoverable.

Research in academia is more concerned with securely erasing the data from a drive.                         
TrueErase by Diesburg et. al. try to mitigate several challenges that arise when one tries to                             
erase a drive. They take into account that not all file systems are the same. TrueErase can                               
erase individual files, as opposed to physical destruction techniques that try to destroy all or                           
nothing.

Contributions
Our contributions of this project are as follows. We share our insight into

1. User space versus kernel space authentication



Authentication should be implemented in user­space, not kernel space. We discuss this                     
further in the Challenges section.

2. The Linux Pluggable Authentication Module (Linux PAM)
Although we didn’t employ PAM, we learned how to use it during the course of this                             
project. Linux already includes PAM, so instead of building and installing PAM from                       
scratch, you should look into the PAM that is already in use by Linux. Installing a new one                                 
can corrupt authentication on your machine.

3. Limitations of reading and writing to and from USB devices before they have                       
been mounted
It’s not possible to read from or write to a USB device in the early stages of the boot                                   
process. Although you may see the device listed, calling sys_read() or filp_open() on the                         
device returns errno ENOENT (no such file or directory). You may find several articles                         
showing you how to make this work, but to our knowledge this is impossible with USB                             
devices at this stage of the boot process.

Challenges
Throughout the development lifecycle, we faced various challenges, both from a decision making                       
standpoint and a physical implementation standpoint.

1. Kernel space authentication
We researched into various methods of authentication, most of which, such as PAM,                       
operated solely in user space. Within the context of the class, these were not adequate                           
solutions. We then began looking into various methods of kernel space authentication,                     
including encrypting the hard drive with dm­crypt, but ended up deciding that extending                       
the USB Authentication project from the previous class was the most efficient solution.

The USB authentication gave us the ability to feature a “something you have” solution to                           
authentication, as a USB device’s serial number becomes instantly readable by the USB                       
hub subsystem upon insertion. While the device was not actually mounted yet, we could                         
authenticate the user with the unique identifier, while also preventing a malicious user                       
from running a programmable USB brute force operation. By exporting shared variables                     
between our main boot process, we could keep track of all USB activity for our system,                             
ensuring that our process operated as intended.

In the end, however, we came to the conclusion that this process of “authentication, or                           
else” would be better served in user space, as the PAM module could help support                           
multiple users on a computer, while also allowing USB cryptographic methods to be                       
added, such as device public/private key pairs, which would allow for safer, and possibly                         
more complex authentication methods (adding in a “what you know” to the security                       
procedures).

2. Communication with the device
As briefly touched on in the previous section, at the point we stopped the boot process,                             



we had very limited access to the file system as a whole. When we first attempted to                               
connect the self­destruct prevention device, we utilized an arduino board which                   
communicated with the system via USB. As USB devices were not actually mounted yet,                         
we could not actually communicate with the machine via standard kernel system calls.                       
Our solution was to move from communication with the USB port to the parallel port                           
instead. We decided that a device that operated on the signals directly from the parallel                           
pins would be desirable, as there would be no need to actually mount the device, we                             
could just send different signals to the port and let the device deal with the flipping of                               
switches based on the signal received. This ended up being the correct model for device                           
communication at the specific point we stopped the boot order.

3. The physical device
This ended up becoming our biggest problem, actually dealing with the device. As we                         
were not very adept at dealing with switchboards or physically transporting signals to                       
device parts, we were completely reliant on the devices Mike Mitchell prepared for us. As                           
mentioned in the previous challenge portion, we ended up changing from an Arduino                       
based device to a switchboard that communicated with the parallel port due to our                         
inability to access the USB mount point at our current progress through the boot process.

The switchboard based device ended up proving to be difficult from a more physical                         
aspect, as we could not send signals straight to the specific components of the device,                           
due to the small amounts of power being sent through each pin. With the combination of                             
a battery and transistor, we were able to send stronger signals to an LED light that was                               
representing our “destruction device”, signifying that we had succeeded in starting the                     
destruction process. When we attempted to create a more stable device (soldering the                       
wires in place for stability, seal the device to conceal wires), the device began sending                           
erratic signals and we were unable to recover a working device from the components.                         
We still have a programmatic solution that works, should the device be repaired to work                           
as before.


