
Context Sensitive 
File System 
Britton Dennis 

Tyler Travis 

Clark Wood 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



Motivation 

 Context awareness is important: 

 Mobile devices, BYOD 

 Cheap Storage 

 Ubiquitous wireless connections 

 Ways related works fall short: 

 Security 

 Transparency 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



Related Works 

 quFiles 

 Ext3cow 

 NCryptfs 



Related Works 
quFiles 

 Way to implement context awareness at file level 

 quFiles directory stores different versions of the same 
logical file; serves appropriate file to application on 
demand 

 Transparent to applications 

 Not transparent to users 



Related Works 
ext3cow 

 Way of doing file versioning / auditing by using copy on 
write on the inode structure 

 Appends snapshot epoch number to files 

 Semi transparent to applications 

 Not transparent to users 



Related Works 
NCryptfs 

 Adds encryption to existing Linux file systems 

 Balanced security, performance, convenience, portability 

 Prevent clear text from being cached 

 Context unaware 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



System Overview 

 Proposed by Michael Mitchell 

 Our system is a proof of concept 

 Two components 

 Context Monitor 

 File system 

 Serves different files based on the security of the 
environment 

 The metrics we wanted to optimize were portability and 
security 



System Diagram 

Context 
Monitor 

User Application 
e.g. Word 

User 

Kernel 

VFS 

Modified 
ext3 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



Context Monitor 

 Modular user level deamon built mostly in python 

 Each module polls a specific system internal (e.g. USB, 
Wifi, etc) for the current status 

 The module then calculates how secure that component 
is at the moment and assigns a number 

 Then all the numbers from all the modules are weighted 
according to the user’s policy and a general ‘security 
level’ is generated 

 This is then sent to the file system so that the file 
system knows whether to open ‘up’ or lock ‘down’ the 
file access 

 The information is passed down through ioctl calls to 
give an extra level of security and flexibility as opposed 
to syscalls or procfiles as the caller needs to know the 
call number and the magic number 



Context Monitor 
Main Flow 

Context 
Monitor 

Context 
Analyzer 

FS 

Wireless 
Test 

GPS 
Test … 

USB 
Test 

Port 
Test 



USB Test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Context Monitor 
Test Case Flow 

USB 
Module 

USB 
Level 

0 

USB 
Level 

1 

USB 
Calculator 

USB 
Level 

n … 

Context 
Monitor 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



File System 

 Built from ext3 from kernel v3.8.5 

 For each file the user sees there are really n+1 files where n 
is the number of security levels 

 The extra n files have the same base name put append a 
separator string as well as the security level number 

 To keep secure data from being leaked, during a security 
level change, the file system will close all processes (as well 
as their children) that opened a file owned by the file 
system 

 To prevent name space collisions and secure information 
leakage, the read directory file operation will hide all files 
ending with our suffix (except the ones the user created 
which can be determined through a recursive scan) 

 To offer more data at higher security levels, the inode from 
the file at level i has blocks that point to all the blocks that 
inode at i-1 points to as well as some blocks only it can see. 



Foo.txt 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File System Organization 

File 
Foo.txt 

File 
Foo.txt:0 

File 
Foo.txt:1 

Dummy 
inode 

Level 0 
inode 

Level 1 
inode 

Physical 
Block 
300 

Physical 
Block 
301 

Physical 
Block 
302 

Physical 
Block 
303 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



Demo 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



Problems / Future Work 

 File system 

 Get write to work 

 Try to eliminate the need to open/close files in kernel context 

 Fairly high chance that code contains locking issues and memory leaks 

 Run some benchmarks and get some performance numbers to see if this is even 
within in the realm of usability 

 Look into possible caching issues 

 Resolve naming collisions that occur from non regular files 

 Support other file operations 

 Add similar mechanism for other types of files, e.g.. Directories 

 Add support for an arbitrarily large number of different security levels 

 Context Monitor 

 Add other tests 

 Close file system if security level goes below acceptable limits 

 Add config options 

 Provide a second user level program  

 Allow users to view data blocks belonging only at a certain levels 

 Allow users to switch to a level lower than what is deemed safe 



Outline 

 Motivation 

 Related Works 

 System Overview 

 Context Monitor 

 File System 

 Demo 

 Problems / Future Work 

 Q and A 



Q and A 


