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Distributed  In-­memory  Key-­Value  Store
• Caching popular key-value (KV) pairs in memory in a 

distributed manner for fast access (mainly reads).
– E.g. Memcached used by Facebook serves >1 billion request per second.

• Client-server architecture.
– Client and server communicate over TCP/IP.
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Memcached Structure
• Two-stage hashing and KV pair locating

– 1st stage to a server and 2nd stage to a hash entry in that server.
– A hash entry contains pointers to locate KV pairs.
– Server chases chained pointers to find desired KV pair.

• Storage and eviction policy
– Memory storage is divided into KV blocks in various sizes.
– A KV pair is stored in the smallest possible KV block.
– Least Recent Used (LRU) for evicting KV pairs.
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PGAS  and  OpenSHMEM
• Partitioned Global Address Space (PGAS) enables a large 

memory address space for parallel programming.
– UPC, CAF, SHMEM.

• OpenSHMEM is a recent standardization effort of SHMEM.
– Participating processes are called Processing Elements (PE).
– A symmetric memory space that is globally-visible.

• Variables have same name and same address on different PE.
– Communication through one-sided operations.

• Put: write to symmetric memory.
• Get: read from symmetric memory.
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Our  Objective
• There is a high suitability of leveraging OpenSHMEM’s feature 

set for building a distributed in-memory key-value store.
– Similar memory-style addressing: client “sees” memory storage.
– One-sided communication relieves the server of participation in 

communication.
– Portability on both commodity servers and HPC systems.

• We propose SHMEMCache, a high-performance key-value 
store built on top of OpenSHMEM.
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Structure  of  SHMEMCache
• Server stores KV pairs in symmetric memory. 
• Client performs two types of KV operations.

– Direct KV operation: client directly accessing KV pairs.
– Active KV operation: client informs server to conduct KV operations by 

writing messages.

• There are three major challenges in realizing this structure.
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Challenges  #1
• Concurrent reads/writes cause read-write & write-write races.

– Solution: read-friendly exclusive write.
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Read-­Friendly  Exclusive  Write
• Key issue: concurrent write can invalidate both read and write.

– Write must be conducted exclusively.

• Solving write-write race: use locks to write exclusively.
– Locks are expensive, so not for the much more frequent reads.

• Solving read-write race: a new optimistic concurrency control.
– Existing solutions are heavy-weight: checksum, cacheline versioning…
– We propose an efficient head-tail versioning mechanism.

• Combining locking and versioning operations to minimize 
overheads.
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Read-­Friendly  Exclusive  Write  (cont.)
• Structure of KV block

• Write operations:
– (1) an atomic CAS for locking and writing tail version; (2) a Put for 

writing KV content and unlocking; (3) a Get for writing head version. 

• Read operation: 
– A Get for reading the whole KV block.
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Challenges  #2
• Concurrent reads/writes cause read/write & write/write races.
• Remotely locating a KV pair incurs costly remote pointer chasing.

– Solution: set-associative hash table and pointer directory.
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• Set-associative hash table
– Multiple pointers are fetched with one hash lookup.
– If pointer not found in a hash entry, only server chases pointers.

• Pointer directory
– New pointer is stored after first read/write.
– Recency and count indicate how recent and frequent a KV pair has been 

accessed. They help decide which pointer to keep in the directory.
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Challenges  #3
• Concurrent reads/writes cause read/write & write/write races.
• Remotely locating a KV pair incurs costly remote pointer chasing.
• Server/client is unaware of other’s access/eviction actions.

– Solution: Coarse-grained cache management.
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Coarse-­grained  Cache  Management
• Relaxed recency definition from time point to time range.
• Non-intrusive recency update

– When recency changes, client directly update it using atomic CAS.

• Batch eviction and lazy invalidation
– Server evicts KV pairs in batches with the oldest recency, and notifies 

client the new expiration bar. KV pair that has higher recency than the 
evicted batch will be updated. New KV pair will be inserted to the top.

– Client lazily invalidate pointers.
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Experimental  Setup
• Innovation

– An in-house cluster with 21 dual-socket server nodes, each featuring 10 
Intel Xeon(R) cores and 64 GB memory. All nodes are connected 
through an FDR Infiniband interconnect with the ConnectX- 3 NIC.

• Titan supercomputer
– Titan is a hybrid-architecture Cray XK7 system, which consists of 18,688 

nodes and each node is equipped with a 16-core AMD Opteron CPU and 
32GB of DDR3 memory. 

• Benchmarks: microbenchmark and YCSB. 
• OpenSHMEM version

– In-house cluster: Open MPI v1.10.3
– Titan: Cray SHMEM v7.4.0 
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Latency
• Innovation cluster

– SHMEMCache outperforms Memcached by 25x and 20x for SET and 
GET latencies.

– SHMEMCache outperforms HiBD by 128% and 16% for SET and GET
latencies. 

Fig. 1 SET latency. Fig. 2 GET latency.
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Latency  (cont.)
• Titan supercomputer

– Direct KV operation is consistently faster. 
– SHMEMCache’s achieves comparable performance on Titan with the 

innovation cluster.

Fig. 1 SET latency. Fig. 2 GET latency.
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Throughput
• Innovation cluster

– SHMEMCache outperforms Memcached by 19x and 33x for 32-Byte and 
4-KB SET, and 14x and 30x for 32-Byte and 4-KB GET.

Fig. 1 SET throughput. Fig. 2 GET throughput.
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Throughput  (cont.)

Fig. 1 SET throughput. Fig. 2 GET throughput.

• Titan supercomputer
– SHMEMCache scales well on Titan supercomputer to up to 1024 

machines.
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Hit  Ratio  of  Pointer  Directory
• Varying YCSB workloads and number of entries in the pointer 

directory.
• Larger pointer directory helps increase hit ratio. 

– The impact is getting smaller due to less popular KV pairs. 
– No need to maximize its size at the cost of low space efficiency.
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Conclusion
• SHMEMCache, a high-performance distributed in-memory KV 

store built on top of OpenSHMEM.
• Novel designs to tackle three major challenges.

– Read-friendly write for solving read-write and write-write races.
– Set-associative hash table and pointer directory for mitigating remote 

pointer chasing.
– Coarse-grained cache management for reducing high costs of informing 

server/client about access/eviction operations.

• Evaluation results showing that SHEMMCache achieves high-
performance at scale of 1024.
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