
Introduction to Java Programming

Lecture 1
CGS 3416 Fall 2015

August 24, 2015



Main Components of a computer

CPU - Central Processing Unit: The ”brain” of the computer
I ISA - Instruction Set Architecture: the specific set of low-level

instructions available to a CPU. Differs for various CPU types (Intel
Pentium, Mac G4, etc)

ALU - Arithmetic Logic Unit responsible for performing arithmetic
calculations, as well as logical operations (comparisons for equality,
inequality, for instance).

Main Memory (RAM - Random Access Memory)
I storage close to CPU
I Faster to access than hard disk
I stores executing programs and data being currently worked on

Secondary Memory
I hard disk, floppy disk, CD, DVD, etc.



Main Components of a computer

Input devices
I mouse, keyboard, scanner, network card, etc.

Output devices
I screen/console, printer, network card, etc.

Operating System
I Examples: Mac OS, Windows XP, Linux
I Controls computer operations
I Manages allocation of resources for currently running applications



Memory Concepts

bit: a binary digit
I Stores the value 0 or 1
I Smallest unit of storage in a computer

byte: 8 bits
I Smallest addressable unit of storage in a computer
I Storage units (variables) in a program are 1 or more bytes
I Each byte in memory has an address (a number that identifies the

location)



Programming, and Programming Languages

Program - a set of instructions for a computer to execute

Evolution of Programming languages

Machine Language
I Based on machine’s core instruction set
I Needed by computer, hard for humans to read (1’s and 0’s)
I Example: 1110110101010110001101010

Assembly Language
I translation of machine instructions to symbols, slightly easier for

humans to read
I Example: ADD $R1, $R2, $R3



Programming, and Programming Languages

High-level procedural languages
I Abstraction of concepts into more human-readable terms
I Closer to ”natural language” (i.e. what we speak)
I Easy to write and design, but must be translated for computer
I Examples include C, Pascal, Fortran

Object-oriented languages
I Abstraction taken farther than procedural languages
I Objects model real-world objects, not only storing data (attributes),

but having inherent behaviors (operations, functions)
I Easier to design and write good, portable, maintainable code
I Examples include Smalltalk, C++, Java



Code Translation

Bridging the gap between high-level code and machine code

Interpreted languages – source code is directly run on an interpreter,
a program that runs the code statements

Compiled Languages
I A compiler program translates source code (what the programmer

writes) to machine language (object code)
I A linker program puts various object code files together into an

executable program (or other target type, like a DLL)
I C and C++ are compiled languages

Java is a mix of both!



Software Development

Involves more than just writing code

Analysis and problem definition

Design - includes design of program or system structure, algorithms,
user-interfaces, and more

Implementation (coding)

Testing - can be done during design, during implementation, and after
implementation

Maintenance - usually the major cost of a software system. Not part
of ”development”, but definitely part of the software life cycle



The Java Language

Java is a programming language that evolved from C++
I Both are object-oriented
I They both have much of the same syntax

Began in the early 90’s, originally used for programming in intelligent
consumer-electronic devices (internal chips, etc).

Was originally named Oak by its creator, but changed when it was
reliazed that there was already a language called Oak

When the Web took off in the early 90s, Java gained popularity for
use in adding dynamic content to web pages

I While applets surely helped Java gain quick popularity, they are by no
means the most important use of the language



The Java Language

Java is now used for a wide variety of purposes.

Its large and rich set of pre-built packages makes it a very popular
choice of software developers

The Java language specification is owned and controlled by Sun
Microsystems (An Oracle Company)

API (Application Programmer Interface) documentation for standard
libraries available on the Oracle website.

Standard Development Kit, along with other development tools can
be downloaded from
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Latest version is Java SE 8 – Java Standard Edition 8.0



Compiling and Running a Java program

Java code compiled to an intermediate level – bytecode

bytecode runs on an interpreter – the Java Virtual Machine

Each platform needs its own JVM, but the same bytecode (generally
speaking) runs on any JVM on any platform (i.e. the compiled
version is portable)

Typically Slower runtime than languages like C++, since running on
an interpreter (and due to other factors)



Basic Creation and Execution of a Java program

1 Create source code with a text editor, store to disk
I Source code is just a plain text file.
I In Java, we give the filename an extension of .java to identify it as a

source code file

2 Compilation – The compiler does syntax checking, translation to
bytecode in files with the .class extension

I bytecode is a translation of the source code to an intermediate level of
code

3 Execution of Java program
I The loader is part of the Java Virtual Machine
I It loads the bytecode into memory and executes the instructions via an

interpreter for the given platform (Windows, Mac, Linux, etc)



Integrated Development Environments

An Integrated Development Environment (IDE) is a software package
that includes all necessary tools for creating a program. Typcially
includes:

I Text editor
I Compiler
I Loader
I Debugger
I Ability to launch and run applications from within IDE environment
I Other useful tools

Java IDEs frequently use the Java Standard Development Kit (SDK)
tools underneath, and provide a graphical interface through menus to
access the underlying tools.

Examples of Java IDEs
I IntelliJ
I NetBeans
I Eclipse



Some Important Java Tools

javac - java compiler

java - java interpreter

jar - the java archive utility

javadoc - utility for auto-generating Java documentation API pages

JSP - Java Server Pages

JRE - Java Runtime Environment

J2SDK - Java 2 Standard Development Kit (sometimes JDK, Java
Development Kit, for short) – includes JRE



Some benefits of Java (over C++) – IMHO

Vast collection of packages available in the Standard Development
Kit (SDK)

I Easy-to-use API descriptions in HTML format on the Sun web site
I Standard format for building API descriptions for classes

Easier to build programs with graphic interfaces (GUI)
I latest packages for GUI (Swing classes) not platform specific
I compiled bytecode runs on multiple platforms
I In C++, one would commonly have to use the GUI libraries for each

different platform

Some syntax has been made simplified

Java Runtime Environment (JRE) does some things for you
I Automatic garbage collection (for dynamically allocated objects)
I more dynamic run-time checking
I automatic dynamic binding and polymorphic behavior



Some benefits of C++ (over Java) – IMHO

Programmer has more control and power in C++
I In C++, programmer responsible for the details
I Control over addresses with pointers
I More control over efficient execution time and resource

allocation/deallocation

C++ programs will typically run faster, because
I compiled to machine’s native instruction set
I dynamic allocation doesn’t have to be used for all objects
I programmer has more power to optimize what they want

C++ still has some extra and versatile features (that Java doesn’t),
like operator overloading and multiple inheritance



Programming is about Problem Solving

Algorithm - a finite sequence of steps to perform a specific task
I To solve a problem, you have to come up with the necessary

step-by-step process before you can code it
I This is often the trickiest part of programming

Some useful tools and techniques for formulating an algorithm
I Top-down Refinement: Decomposing a task into smaller and simpler

steps, then breaking down each step into smaller steps, etc
I Pseudocode: Writing algorithms informally in a mixture of natural

language and general types of code statements
I Flowcharting: If you can visualize it, it’s often easier to follow and

understand!



Programming is about Problem Solving

Testing - algorithms must also be tested!
I Does it do what is required?
I Does it handle all possible situations?

Syntax vs. Semantics
I Syntax – the grammar of a language.

A syntax error: ”I is a programmer.”
I Semantics – the meaning of language constructs

Correct syntax, but a semantic error: ”The car ate the lemur.”


