Introduction to Java Programming

Lecture 1
CGS 3416 Fall 2015

August 24, 2015

Main Components of a computer

@ CPU - Central Processing Unit: The "brain” of the computer
> ISA - Instruction Set Architecture: the specific set of low-level
instructions available to a CPU. Differs for various CPU types (Intel
Pentium, Mac G4, etc)

@ ALU - Arithmetic Logic Unit responsible for performing arithmetic
calculations, as well as logical operations (comparisons for equality,
inequality, for instance).

e Main Memory (RAM - Random Access Memory)

» storage close to CPU
» Faster to access than hard disk
> stores executing programs and data being currently worked on

Secondary Memory
» hard disk, floppy disk, CD, DVD, etc.

Main Components of a computer

@ Input devices

» mouse, keyboard, scanner, network card, etc.
@ Output devices

» screen/console, printer, network card, etc.
@ Operating System

» Examples: Mac OS, Windows XP, Linux

» Controls computer operations
» Manages allocation of resources for currently running applications

Memory Concepts

@ bit: a binary digit
» Stores the value 0 or 1
» Smallest unit of storage in a computer
@ byte: 8 bits
» Smallest addressable unit of storage in a computer

» Storage units (variables) in a program are 1 or more bytes

» Each byte in memory has an address (a number that identifies the
location)

Programming, and Programming Languages

Program - a set of instructions for a computer to execute

Evolution of Programming languages
@ Machine Language

» Based on machine’s core instruction set
» Needed by computer, hard for humans to read (1's and 0's)
» Example: 1110110101010110001101010

@ Assembly Language

» translation of machine instructions to symbols, slightly easier for
humans to read
» Example: ADD $R1, $R2, $R3

Programming, and Programming Languages

@ High-level procedural languages

» Abstraction of concepts into more human-readable terms
» Closer to "natural language” (i.e. what we speak)
» Easy to write and design, but must be translated for computer
» Examples include C, Pascal, Fortran
@ Object-oriented languages

» Abstraction taken farther than procedural languages

» Objects model real-world objects, not only storing data (attributes),
but having inherent behaviors (operations, functions)

» Easier to design and write good, portable, maintainable code

» Examples include Smalltalk, C+-+, Java

Code Translation

Bridging the gap between high-level code and machine code

@ Interpreted languages — source code is directly run on an interpreter,
a program that runs the code statements
@ Compiled Languages
» A compiler program translates source code (what the programmer
writes) to machine language (object code)
» A linker program puts various object code files together into an
executable program (or other target type, like a DLL)
» C and C++ are compiled languages

@ Java is a mix of both!

Software Development

Involves more than just writing code

o

Analysis and problem definition

Design - includes design of program or system structure, algorithms,
user-interfaces, and more

Implementation (coding)

Testing - can be done during design, during implementation, and after
implementation

Maintenance - usually the major cost of a software system. Not part
of "development”, but definitely part of the software life cycle

The Java Language

@ Java is a programming language that evolved from C+4+-+
» Both are object-oriented
» They both have much of the same syntax
@ Began in the early 90's, originally used for programming in intelligent
consumer-electronic devices (internal chips, etc).
@ Was originally named Oak by its creator, but changed when it was
reliazed that there was already a language called Oak
@ When the Web took off in the early 90s, Java gained popularity for
use in adding dynamic content to web pages

» While applets surely helped Java gain quick popularity, they are by no
means the most important use of the language

The Java Language

@ Java is now used for a wide variety of purposes.

@ lts large and rich set of pre-built packages makes it a very popular
choice of software developers

@ The Java language specification is owned and controlled by Sun
Microsystems (An Oracle Company)

e API (Application Programmer Interface) documentation for standard
libraries available on the Oracle website.

@ Standard Development Kit, along with other development tools can
be downloaded from
http://www.oracle.com /technetwork/java/javase/downloads/index.html

@ Latest version is Java SE 8 — Java Standard Edition 8.0

Compiling and Running a Java program

@ Java code compiled to an intermediate level — bytecode
@ bytecode runs on an interpreter — the Java Virtual Machine

@ Each platform needs its own JVM, but the same bytecode (generally
speaking) runs on any JVM on any platform (i.e. the compiled
version is portable)

@ Typically Slower runtime than languages like C++, since running on
an interpreter (and due to other factors)

Basic Creation and Execution of a Java program

@ Create source code with a text editor, store to disk
» Source code is just a plain text file.
> In Java, we give the filename an extension of .java to identify it as a
source code file
@ Compilation — The compiler does syntax checking, translation to
bytecode in files with the .class extension
» bytecode is a translation of the source code to an intermediate level of
code
© Execution of Java program
» The loader is part of the Java Virtual Machine
> It loads the bytecode into memory and executes the instructions via an
interpreter for the given platform (Windows, Mac, Linux, etc)

Integrated Development Environments

@ An Integrated Development Environment (IDE) is a software package
that includes all necessary tools for creating a program. Typcially
includes:

Text editor

Compiler

Loader

Debugger

Ability to launch and run applications from within IDE environment

Other useful tools

\4

vV vy VY VvYYyYy

e Java IDEs frequently use the Java Standard Development Kit (SDK)
tools underneath, and provide a graphical interface through menus to
access the underlying tools.

@ Examples of Java IDEs

> IntelliJ
» NetBeans
> Eclipse

Some Important Java Tools

@ javac - java compiler

@ java - java interpreter

@ jar - the java archive utility

@ javadoc - utility for auto-generating Java documentation API pages
@ JSP - Java Server Pages

@ JRE - Java Runtime Environment

@ J2SDK - Java 2 Standard Development Kit (sometimes JDK, Java
Development Kit, for short) — includes JRE

Some benefits of Java (over C++) — IMHO

@ Vast collection of packages available in the Standard Development
Kit (SDK)
» Easy-to-use API descriptions in HTML format on the Sun web site
» Standard format for building API descriptions for classes
@ Easier to build programs with graphic interfaces (GUI)
» latest packages for GUI (Swing classes) not platform specific
» compiled bytecode runs on multiple platforms
» In C++, one would commonly have to use the GUI libraries for each
different platform

@ Some syntax has been made simplified

e Java Runtime Environment (JRE) does some things for you

» Automatic garbage collection (for dynamically allocated objects)
» more dynamic run-time checking
» automatic dynamic binding and polymorphic behavior

Some benefits of C++ (over Java) — IMHO

@ Programmer has more control and power in C4++

> In C4++, programmer responsible for the details

» Control over addresses with pointers

» More control over efficient execution time and resource
allocation/deallocation

@ C++ programs will typically run faster, because
» compiled to machine's native instruction set
» dynamic allocation doesn't have to be used for all objects
» programmer has more power to optimize what they want
@ C++ still has some extra and versatile features (that Java doesn't),
like operator overloading and multiple inheritance

Programming is about Problem Solving

@ Algorithm - a finite sequence of steps to perform a specific task
» To solve a problem, you have to come up with the necessary
step-by-step process before you can code it
» This is often the trickiest part of programming

@ Some useful tools and techniques for formulating an algorithm

» Top-down Refinement: Decomposing a task into smaller and simpler
steps, then breaking down each step into smaller steps, etc

» Pseudocode: Writing algorithms informally in a mixture of natural
language and general types of code statements

» Flowcharting: If you can visualize it, it's often easier to follow and
understand!

Programming is about Problem Solving

@ Testing - algorithms must also be tested!
» Does it do what is required?
» Does it handle all possible situations?
@ Syntax vs. Semantics
» Syntax — the grammar of a language.
A syntax error: "l is a programmer.”

» Semantics — the meaning of language constructs
Correct syntax, but a semantic error: " The car ate the lemur.”

