
C++ Basics

Lecture 3
COP 3014 Spring 2017

January 12, 2017



Structure of a C++ Program

I Sequence of statements, typically grouped into functions.
I function: a subprogram. a section of a program performing a

specific task.
I Every function body is defined inside a block.

I For a C++ executable, exactly one function called main()

I Can consist of multiple files and typically use libraries.
I Statement: smallest complete executable unit of a program.

I Declaration statement
I Execution statement
I Compound statement – any set of statements enclosed in set

braces { } (often called a block)
I Simple C++ statments end with a semi-colon. (A block does

not typically need a semi-colon after it, except in special
circumstances).



Libraries

I Usually pre-compiled code available to the programmer to
perform common tasks

I Compilers come with many libraries. Some are standard for all
compilers, and some may be system specific.

I Two parts
I Interface: header file, which contains names and declarations

of items available for use
I Implementation: pre-compiled definitions, or implementation

code. In a separate file, location known to compiler

I Use the #include directive to make a library part of a program
(satisfies declare-before-use rule)



Building and Running a C++ Program

I Starts with source code, like the first sample program
I Pre-processing

I The #include directive is an example of a pre-processor
directive (anything starting with #).

I #include <iostream>tells the preprocessor to copy the
standard I/O stream library header file into the program

I Compiling
I Syntax checking, translation of source code into object code

(i.e. machine language). Not yet an executable program.

I Linking
I Puts together any object code files that make up a program,

as well as attaching pre-compiled library implementation code
(like the standard I/O library implementation, in this example)

I End result is a final target – like an executable program

I Run it!



Typical Code Elements

I Comments - Ignored by the Compiler

I Directives - For preprocessing

I Literals - Hardcoded values. g: 10

I Keywords - Words with special meaning to the compiler. Eg:
int

I Identifiers - Names for variables, functions, etc.

I Operators - Symbols that perform certain operations. eg: +



Comments

I Comments are for documenting programs. They are ignored
by the compiler.

I Block style (like C)
/* This is a comment.

It can span multiple lines */

I Line comments – use the double-slash //
int x; // This is a comment

x = 3; // This is a comment



Data Types

Atomic data types are the built-in types defined by the C++
language.

I bool: has two possible values, true or false
I integer types

I char - 1 byte on most systems.
I Typically used for representing characters
I Stored with an integer code underneath (ASCII on most

computers today)

I short - (usually at least 2 bytes)
I int - (4 bytes on most systems)
I long - (usually 4 or more bytes)
I The integer types have regular and unsigned versions

I floating point types - for storage of decimal numbers (i.e. a
fractional part after the decimal)

I float
I double
I long double



Identifiers

Identifiers are the names for things (variables, functions, etc) in the
language. Some identifiers are built-in, and others can be created
by the programmer.

I User-defined identifiers can consist of letters, digits, and
underscores

I Must start with a non-digit

I Identifiers are case sensitive (count and Count are different
variables)

I Reserved words (keywords) cannot be used as identifiers



Style Conventions for Identifiers

I Don’t re-use common identifiers from standard libraries (like
cout, cin)

I Start names with a letter, not an underscore. System
identifiers and symbols in preprocessor directives often start
with the underscore.

I Pick meaningful identifiers – self-documenting

numStudents, firstName // good

a, ns, fn // bad

I a couple common conventions for multiple word identifiers
I numberOfMathStudents
I number of math students



Declaring Variables

I Declare Before Use: Variables must be declared before they
can be used in any other statements

I Declaration format:
typeName variableName1, variableName2, ...;

int numStudents; // variable of type integer

double weight; // variable of type double

char letter; // variable of type character

//Examples of multiple variables of the same type

//in single declaration statements

int test1, test2, finalExam;

double average, gpa;



Initializing Variables

I To declare a variable is to tell the compiler it exists, and to
reserve memory for it

I To initialize a variable is to load a value into it for the first
time

I If a variable has not been initialized, it contains whatever bits
are already in memory at the variable’s location (i.e. a
garbage value)

I One common way to initialize variables is with an assignment
statement. Examples:
int numStudents;

double weight;

char letter;

numStudents = 10;

weight = 160.35;

letter = ‘A’;



Initializing Variables

I Variables of built-in types can be declared and initialized on
the same line, as well

int numStudents = 10;

double weight = 160.35;

char letter = ‘A’;

int test1 = 96, test2 = 83, finalExam = 91;

double x = 1.2, y = 2.4, z = 12.9;



Initializing Variables

An alternate form of initializing and declaring at once:

// these are equivalent to the ones above

int numStudents(10);

double weight(160.35);

char letter(‘A’);

int test1(96), test2(83), finalExam(91);

double x(1.2), y(2.4), z(12.9);



Constants

I A variable can be declared to be constant. This means it
cannot change once it’s declared and initialized

I Use the keyword const

I MUST declare and initialize on the same line
const int SIZE = 10;

const double PI = 3.1415;

// this one is illegal, because it’s not

// initialized on the same line

const int LIMIT; // BAD!!!

LIMIT = 20;

I A common convention is to name constants with all-caps (not
required)



Symbolic Constants (an alternative)

I A symbolic constant is created with a preprocessor directive,
#define. (This directive is also used to create macros).

I Examples:
#define PI 3.14159

#define DOLLAR ‘$’

#define MAXSTUDENTS 100

I The preprocessor replaces all occurrences of the symbol in
code with the value following it. (like find/replace in MS
Word).

I This happens before the actual compilation stage begins



Literals

I Literals are also constants. They are literal values written in
code.

I integer literal – an actual integer number written in code (4,
-10, 18)

I If an integer literal is written with a leading 0, it’s interpreted
as an octal value (base 8).

I If an integer literal is written with a leading 0x, it’s interpreted
as a hexadecimal value (base 16)

I Example:
int x = 26; // integer value 26

int y = 032; // octal 32 = decimal value 26

int z = 0x1A; // hex 1A = decimal value 26



More Literals

I floating point literal – an actual decimal number written in
code (4.5, -12.9, 5.0)

I These are interpreted as type double by standard C++
compilers

I Can also be written in exponential (scientific) notation:
(3.12e5, 1.23e-10)

I character literal – a character in single quotes: (‘F’, ‘a’, ‘\n’)

I string literal – a string in double quotes: (“Hello”, “Bye”,
“Wow!\n”)

I boolean literals - true or false



Escape Sequences

I String and character literals can contain special escape
sequences

I They represent single characters that cannot be represented
with a single character from the keyboard in your code

I The backslash \is the indicator of an escape sequence. The
backslash and the next character are together considered ONE
item (one char)

I Some common escape sequences are listed in the table below

Escape Sequence Meaning

\n newline
\t tab
\” double quote
\’ single quote
\\ backslash



Input and Output Streams

I In C++ we use do I/O with “stream objects”, which are tied
to various input/output devices.

I These stream objects are predefined in the iostream library.
I cout – standard output stream

I Of class type ostream (to be discussed later)
I Usually defaults to the monitor

I cin – standard input stream
I Of class type istream (to be discussed later)
I Usually defaults to the keyboard

I cerr – standard error stream
I Of class type ostream
I Usually defaults to the monitor, but allows error messages to

be directed elsewhere (like a log file) than normal output



Using Streams

I To use these streams, we need to include the iostream library
into our programs.

#include <iostream>
using namespace std;

I The using statement tells the compiler that all uses of these
names (cout, cin, etc) will come from the ”standard”
namespace.



Using the Output Stream

I output streams are frequently used with the insertion
operator <<

I Format:
outputStreamDestination <<itemToBePrinted

I The right side of the insertion operator can be a variable, a
constant, a value, or the result of a computation or operation

I Examples:
cout <<‘‘Hello World"; // string literal

cout <<‘a’; // character literal

cout <<numStudents; // contents of a variable

cout <<x + y - z; // result of a computation

cerr <<‘‘Error occurred"; // string literal

printed to standard error



Cascading Output

I When printing multiple items, the insertion operator can be
“cascaded”.

I Cascading is placing another operator after an output item to
insert a new output item.
cout <<‘‘Average = " <<avg <<‘\n’;
cout <<var1 <<‘\t’ <<var2 <<‘\t’ <<var3;

I We won’t utilize cerr in this course. It’s less common than
cout esp. in intro programming, but here for completeness.



Input Streams

I input streams are frequently used with the extraction
operator >>

I Format:
inputStreamSource >>locationToStoreData

I The right side of the extraction operator MUST be a memory
location. For now, this means a single variable!

I By default, all built-in versions of the extraction operator will
ignore any leading “white-space” characters (spaces, tabs,
newlines, etc)

I In case if strings, the extraction operator will keep reading
until it encounters a white space character.



Examples

int numStudents;

cin >>numStudents; // read an integer

double weight;

cin >>weight; // read a double

cin >>‘\n’; // ILLEGAL. Right side must be a

variable

cin >>x + y; // ILLEGAL. x + y is a computation, not

a variable

The extraction operator can be cascaded, as well:
int x, y;

double a;

cin >>x >>y >>a; // read two integers and a double

from input



Some special formatting for decimal numbers

You will need the iomanip library for this.

I By default, decimal (floating-point) numbers will print in
standard notation while possible, using scientific notation only
when the numbers are too small or too large.

I Usually, cout prints out floats only as far as needed, up to a
certain preset number of decimal places (before rounding the
printed result).

double x = 4.5, y = 12.666666666666, z = 5.0;

cout <<x; // will likely print 4.5

cout <<y; // will likely print 12.6667

cout <<z; // will likely print 5



Magic Formula

I A special “magic formula” for controlling how many decimal
places are printed:

cout.setf(ios::fixed); //fixed point notation

cout.setf(ios::showpoint);

// so that decimal point will always be shown

cout.precision(2);

// sets floating point types to print to 2

decimal places (or use your desired number)

cout.setf(ios::scientific);

// float types formatted in exponential notation



Magic Formula

I Any cout statements following these will output floating-point
values in the usual notation, to 2 decimal places.

double x = 4.5, y = 12.666666666666, z = 5.0;

cout <<x; // prints 4.50

cout <<y; // prints 12.67

cout <<z; // prints 5.00

I These statements use what are called stream manipulators,
which are symbols defined in the iostream library as shortcuts
for setting those particular formatting flags



Alternate Method

I Here’s an alternate way to set the “fixed” and “showpoint”
flags

cout <<fixed;
// uses the "fixed" stream manipulator

cout <<showpoint;
// uses the "showpoint" stream manipulator

cout <<setprecision(3); // uses the set

precision stream manipulator (you’ll need the

iomanip library for this)

//The above sets precision of the value to 3

numbers. You can change this value based on what

you need.


