
Introduction to Object-Oriented
Programming

Programs
What is a program?

– A list of instructions for a computer to execute.

 Program Hierarchy:
Machine – A program in a language the hardware can understand
(1's and 0's). CPU's generally support a certain machine language
know as the architecture (eg. X86, PowerPC)

Assembly – A program in a language that mirrors machine
language which is human readable but still cumbersome to program
in.

High-level Procedural (C, Fortran, Pascal) – High level languages
that provide an abstraction of the hardware.

Object-oriented (C++, Java, Python) – Another even higher-level
abstraction (often built on top of or in conjunction with procedural
languages).

Goals of Object-oriented Languages

What do object-oriented languages (attempt) to
give us?

– A way of writing code that is more structured.

– The ability to write code that is more reusable.

– An abstraction of the computer hardware that is more in
line with how humans think about solving problems.

– Less worry about handling some programming intricacies

– A way to protect ourselves from doing things we shouldn't
be defining the way our data can be accessed.

Object-Oriented basics
 A fundamental concept in an object-oriented language is the

encapsulation of data and procedures (functions) together into
units called objects.

 An object consists of:
Name – a way of referring to an object inside a program (eg. A
Fraction object might be called F1).

Member Data – data contained within an object (eg. Fraction has
an integer numerator and denominator).

Member Functions – routines that act upon the data within an

object (eg. The fraction object might have a function that returns
the decimal representation of the fraction stored).

Interface – defines the ways a programmer may directly access
the member data/functions of an object (more on this next
lecture).

Classes
 A class is another fundamental concept in an object-oriented

language that provides a blueprint for a new type
('classification') of object.

 A class outlines the data, functions and the interface objects of
that class will receive.

 A class also defines how objects of that class behave by
providing code that implements the functions associated with
the class.

 A programmer can create one or more objects from a class

– Similar to building multiple houses from one set of

blueprints.

What is so special about
objects/classes?
 The C programming language provides a similar concept called

structs:

struct point { /* define a new type called point */

 int x;

 int y;

};

point p1; /* create an instance of point called p1 */

p1.x = 1; /* use p1 */

p1.y = 2;

 C structs only hold data.
 Objects hold data and functions that act on that data.

– Much more powerful.

How to use objects
DDU – Declare, Define, Use

• Declare a class

Choose what objects of this class will store (member
variables), and how objects will behave (member
functions).

• Define member functions

Provide an implementation for the member functions in
the class.

• Use class to create objects

You can declare an new object instance of your class
just like declaring any other variable (eg. int x).

Example Class Declaration
class Circle
{
public: /* interface, we will cover later */

 void SetRadius(double r); /* sets member variable radius to r */

 double AreaOf(); /* returns area of circle as a double */

 double radius; /* radius of circle stored as double */

}; /* don't forget ';' */

Defining Member Functions
There are two ways to provide the member function
definitions for a class:

• Inside the class declaration using {} (we will not use)
• After the class declaration (this is the method we

choose)

How to refer to a member function:
className::memberFuntionName

• this identifier refers to the member function
memberFunctionName of class className (e.g.
Circle::SetRadius)

• The double colon :: is called the scope resolution
operator

After the class declaration, member functions are
defined just like any other function

Example Member Function
Definition
//Declaration:
class Circle
{
public:
 void SetRadius(double r); /*sets member variable radius to r */
 double AreaOf(); /* returns area of circle as a double */
private:
 double radius; /* radius of circle */
};

/* Definition (Implementation) */
void Circle::SetRadius(double r)
{
 radius = r; /* radius refers to this object’s member variable */
'radius'
}

double Circle::AreaOf()
{
 return (3.14*radius*radius);
}

Object Use
After a class has been declared and defined, an object of that class can be
be declared (also known as creation or instantiation) and used.

A programmer can declare an object with the following format:

ClassName ObjectName;

This statement creates an object based on the blueprint of class
‘ClassName’ and the object can be referred to by the identifier (variable
name) ‘ObjectName’

The ‘ . ’ (dot) operator can be used to access an object’s public
members

The format for referring to an object’s member is:
ObjectName.MemberFunction() OR
ObjectName.MemberVariable

Putting it All Together
See sample1.cpp
To recap, this program:

declares the class Circle and outlines its members and
interface
defines the implementation for the member functions of the
Circle class
declares two objects of the class Circle, referred to as C1 and
C2
uses the interfaces of C1 and C2 to store the radius of two
circles and later to calculate the area of those circles

Review
What is a class?

What is an object?

What is the difference between a
declaration and a definition?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

