

Review

● Why do we have 2 overloads for operator[]?

● What is the difference between a shallow copy and a deep
copy?
● Which happens by default?

● When is the copy constructor implicitly called on an object?

● Why is the parameter to the copy constructor passed by const
reference?
● What would happen if we passed by value?

● What are the differences between operator= and the copy
constructor?
● What does operator= return?

Protection Levels and Constructors
Inheritance

Introduction

Recall that the composition relationship between classes
(object/classes within object/classes) is informally referred to as
the “has a” relationship.

PlayList “has a” Song

PokerHand “has a” Card

C++ allows us to define another (more intimate) relationship
between classes informally known as the “is a” relationship.

The “is a” relationship allows a programmer to define a derived
class in terms of a base class.

The derived class then becomes a type/kind of the base class.

Another way of thinking of this is that the derived class is everything the
base class is and (possibly) more.

This allows us to use the derived class object as though it were a base
class object in certain scenarios.

Inheritance Basics

The “is a” relationship is realized though Inheritance using the
following declaration syntax:

class derivedClassName : public baseClassName

Eg.

class Checking : public Account

class Baseball : public Sport

class Car : public Vehicle

class Honda : public Car

See sample1.cpp

Protection Levels

Private members of a base class are not accessible from a
derived class that inherits it.

Since it may be convenient to allow some members we wish to
hide from the public interface of a class to be accessible within
derived classes, we introduce a new protection level called
protected.

Here is a summary:

public - Members that can be accessed by name from within any function.

private - Members that can only be accessed within member and friend
functions of the class in which they are declared.

protected - Members that can only be accessed within member and friend
functions of the class in which they are declared AND from within derived class's
member and friend functions.

See sample2.cpp

Constructors/Destructors

Since a derived class instance (object) is also a base class
instance, both the base and derived class constructors must run
when a derived object is instantiated.

Constructors run from most general (most base) to most
derived.

Destructors run from most specific (most derived) to most base.

See sample3.cpp

What about constructors with parameters?

See sample4.cpp

Function Overriding

One of the most useful features Inheritance include and allows
us to customize the behavior of derived objects.

A derived class can declare it's own version of a function
declared in the base class from which it inherits.

The base class version of the function will supersede (override) the
version in the base class.

See sample5.cpp

We can even still access the original base class version of the
function through an explicit call.

This is because a derived class must, by definition, be everything the
base class is and (possibly) more.

See sample6.cpp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

