
Dynamic Memory Allocation

The ‘new’ Operator
 Used to allocate dynamic memory
 Can be used to allocate a single variable/object or

array of a variables/objects
 The new operator returns pointer to type allocated
 Examples:

 int *my_char_ptr = new char;
 int *my_int_array =new int[20];
 Mixed *m1 = new Mixed(1,1,2);

sample1.cpp
sample2.cpp

‘delete’ Operator
 Used to free memory allocated with new operator
 The delete operator should be called on a pointer to

dynamically allocated memory when it is no longer
needed

 Can delete a single variable/object or an array
 delete PointerName;
 delete [] ArrayName;

 After delete is called on a memory region, that region
should no longer be accessed by the program

 Convention is to set pointer to deleted memory to
NULL

sample3.cpp
sample4.cpp

The Heap (Freestore)
 Large area of memory controlled by the operating

system that is used to grant dynamic memory
requests.

 It is possible to allocate memory and “lose” the
pointer to that region without freeing it. This is
called a memory leak.

 A memory leak can cause the heap to become
full (no more memory to grant)

 If an attempt is made to allocate memory from the
heap and there is not enough, an exception is
generated (error)

sample5.cpp

Why use dynamic memory
allocation?
 Allows data (especially arrays) to take on variable

sizes (e.g. ask the user how many numbers to
store, then generate an array of integers exactly
that size).

 Allows locally created variables to live past end of
routine.

 Allows us to create many structures used in Data
Structures and Algorithms

sample6.cpp
sample7.cpp

The . and -> operators
 The dot operator is used to access an object’s

members
 M1.Simplify();
 M1.num = 5;

 But how do we access an objects members if we
only have a pointer to the object?

 Perhaps we would use (*(M1_ptr)).Simplify()
(What's at M1_ptr is M1)

 A shorthand for this is the arrow operator
 M1_ptr->Simplifly() is equivelant

to(*(M1_ptr)).Simplify()
sample8.cpp

	Dynamic Memory Allocation
	The ‘new’ Operator
	‘delete’ Operator
	The Heap
	Why use dynamic memory allocation?
	The . and -> operators

