
Copy Constructor /
Assignment Operator

Automatically Generated Functions
 We have learned of two member functions sometimes

automatically generated by the compiler
 Constructor – An empty default (ie. no params) constructor is

created if no constructor is defined.
 Destructor – An empty destructor is created if no destructor is

defined.

 Today we will discuss two other sometimes
automatically generated member functions
 Copy Constructor
 Assignment Operator

Copy Constructor
 A copy constructor IS a constructor and therefore:

 has the same name as the class
 has no return type (although, it seems to return a class object

when called explicitly)
 Like the conversion constructor, there are situations when the

copy constructor is called implicitly. They are:
 when an object is declared to have the same value as another

object
Example: Fraction f1(1,2);
 Fraction f2 = f1; //new object f2 is initialized as a COPY of f1

 when an object is passed by value into a function
 when an object is returned by value from a function

Copy Constructor Declaration
 Since the purpose of a copy constructor is to initialize

a new object to be a copy of another object, it accepts
a single object as a parameter

 Format: classname(const classname&)
 The argument is const because the copy constructor

should not alter the original (not required)
 The argument MUST be passed by reference, why?
 Examples

 Fraction(const Fraction& f)
 Mixed(const Mixed& m)

S hallow Copy vs Deep Copy
 Suppose we want to copy a playlist object:

-ORIGINAL PLAYLIST-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

 There are two ways we could make a copy:
 Shallow (default) – All member data is copied

EXACTLY from the old object into the new one.
 Deep (overloaded) – New dynamic memory is

created for pointers

S hallow Copy

-ORIGINAL PLAYLIST-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

-COPY-
(Functions)

...
 Song *Plist : -
 int array_size : -
 int NumSongs : -

 We start in the copy constructor of COPY with the
original as a parameter

S hallow Copy

-ORIGINAL PLAYLIST-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

-COPY-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

 Set data in copy equal to that of the original... DONE.

Deep Copy

-ORIGINAL PLAYLIST-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

-COPY-
(Functions)

...
 Song *Plist : -
 int array_size : -
 int NumSongs : -

 We start in the copy constructor of COPY with the
original as a parameter

Deep Copy

-ORIGINAL PLAYLIST-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

-COPY-
(Functions)

...
 Song *Plist : -
 int array_size : 5
 int NumSongs : 2

 Set NON-POINTER data in the copy equal to the
original

Deep Copy

-ORIGINAL PLAYLIST-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

-COPY-
(Functions)

...
 Song *Plist : 0xFFB74
 int array_size : 5
 int NumSongs : 2

 Allocate new memory for data pointer points to.

Deep Copy

-ORIGINAL PLAYLIST-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

-COPY-
(Functions)

...
 Song *Plist : 0xFFB74
 int array_size : 5
 int NumSongs : 2

 Copy data from old dynamic memory to new... DONE.

S1 S2 E E E

Assignment operator
 The assignment operator (=) is called when one

object is assigned to another
 The assignment operator is similar to the copy

constructor, but there are some key differences
 The assignment operator is a normal member function not a

constructor, this means 2 objects already exist and have been
initialized

 The assignment operator returns the value it was assigned
(allows cascading calls)
 Fraction f1(1,2),f2,f3,f4;
 f4 = f3 = (f2 = f1);
 f4 = (f3 = (f2))
 (f4 = (f3))
 (f4)

Assignment operator
 Format: classname& operator=(const classname&);
 Ex. Fraction lhs(1,2), rhs(2,5);
 lhs = rhs;
 lhs is the calling object, rhs is the parameter, the

assignment function alters lhs to be a copy of rhs and
returns a reference to lhs.

 If lhs is the calling object, how can we return a
reference to it?

The this pointer
 Inside every object is a pointer named 'this'
 It's like having 'classname *this;' in the member data

of an object
 The 'this' pointer is set to point to the object itself
 You can actually call another member function with

the statement this->memberFunction()
 We can use the this pointer to return a reference to

the object itself in the assignment operator
 Should we return this or *this ? (this pointer or

whats at this pointer?)

Deep Copy (Assignment)
 Suppose we are assigning playlist LHS to RHS

(LHS=RHS;)
 The automatically generated copy constructor

performs a shallow copy
 Lets see what we would have to do in order to do an

overload of the assignment operator that performs a
deep copy

Deep Copy (Assignment)
 LHS is the calling object and already has its own

member data that we want to match RHS

-LHS-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 10
 int NumSongs : 7

S1 S2 E E E

-RHS-
(Functions)

...
 Song *Plist : 0xFFB74
 int array_size : 5
 int NumSongs : 2

S1 S2 s3 s4 s5 S6 S7 E E E

Deep Copy (Assignment)
 Since LHS's array is the wrong size, we must

deallocate it and reallocate the correct size

-LHS-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 10
 int NumSongs : 7

S1 S2 E E E

-RHS-
(Functions)

...
 Song *Plist : 0xFFB74
 int array_size : 5
 int NumSongs : 2

S1 S2 s3 s4 s5 S6 S7 E E E

Deep Copy (Assignment)
 Since LHS's array is the wrong size, we must

deallocate it and reallocate the correct size

-LHS-
(Functions)

...
 Song *Plist : 0xFFA08
 int array_size : 10
 int NumSongs : 7

S1 S2 E E E

-RHS-
(Functions)

...
 Song *Plist : 0xFFB74
 int array_size : 5
 int NumSongs : 2

Deep Copy (Assignment)
 Since LHS's array is the wrong size, we must

deallocate it and reallocate the correct size

-LHS-
(Functions)

...
 Song *Plist : 0xFBCC2
 int array_size : 10
 int NumSongs : 7

S1 S2 E E E

-RHS-
(Functions)

...
 Song *Plist : 0xFFB74
 int array_size : 5
 int NumSongs : 2

Deep Copy (Assignment)
 We can now copy the elements of RHS to LHS and

copy the other member data...DONE.

-LHS-
(Functions)

...
 Song *Plist : 0xFBCC2
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

-RHS-
(Functions)

...
 Song *Plist : 0xFFB74
 int array_size : 5
 int NumSongs : 2

S1 S2 E E E

Everything else
 Assignment operator must always be a member

function (can't be friend)
 Assignment operator implementation always ends

with: return *this;
 If you define a copy constructor, but no other

constructor, an empty default constructor WILL NOT
be generated by the compiler

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

