
Pointers

Pointers
 Every location in memory has a unique number

assigned to it called it’s address
 A pointer is a variable that holds a memory

address
 A pointer can be used to store an object or

variable’s location in memory
 We can later “dereference” a pointer to have

direct access to the object or variable the pointer
points to.

Pointers
 Each memory address refers to the location of a single byte of data and

consecutive memory addresses refer to contiguous bytes (i.e. bytes 100 and
101 are next to each other). Another way to think of memory is like a giant
char array.

void foo() {

}//return

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

Pointers
 The compiler reserves a memory location for each variable declared
 The number of bytes reserved for a variable depend on the size of the

variable type (an int is represented by 4 bytes in many systems).

Memory

Val

100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

}//return

Pointers
 A pointer is allocated space in memory just like any other variable.
 Since a pointer holds an address, 32-bit systems use 32 bit addresses and

therefore need 4 bytes to represent an address (32 bits * 1byte/8bits = 4
bytes). **Note that all pointers are allocated the same amount of memory
independent of type (char*,int*,double*).

Val

ValPtr

Memory

Val

100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

}//return

Pointers
 A pointer pointer holds the address of a pointer of that same type and

therefore is allocated the same space as a pointer. An int* holds the
address of an int, and int** holds the address of an int*, an int*** holds the
address of an int** etc.

Memory

Val

ValPtr

ValPtrPtr

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

}//return

Pointers
 When the compiler performs assignment, it goes to the address of a variable

and updates the value. More generally, when a programmer writes the
name of a variable “X” it can be interpreted as “the value in the memory
reserved for X.”

16

Memory

Val

ValPtr

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

ValPtrPtr

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

Pointers
 By placing the ‘&’ operator in front of a variable name, it is possible to refer

to the address of that variable rather than its value. In other words, “&X” is
interpreted as “the address of the memory reserved for X.” The address of
a variable is the address of the first byte it occupies in memory.

100

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

16

Memory

Val

ValPtr

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

ValPtrPtr

Pointers
 For variables that are pointers, the ‘*’ operator allows a programmer access

to the value at the address stored in the pointer. This is called
dereferencing a pointer and the process is known as indirection. Indirection
is one reason pointers have types, although all pointers hold addresses, the
compiler must know what type is stored at an address to access the value.

5

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

100

Memory

Val

ValPtr

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

ValPtrPtr

Pointers
 Since a pointer pointer holds an address, it can be used almost exactly as a

pointer. The extra “pointer” just says that the value at the address is an int*
rather than an int.

104

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

5

100

Memory

Val

ValPtr

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

ValPtrPtr

Pointers
 Since a pointer pointer holds an address, it can be used almost exactly as a

pointer. The extra “pointer” just says that the value at the address is an int*
rather than an int.

0

sample1.cpp

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

104

5

Memory

Val

ValPtr

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

ValPtrPtr

Pointers
 When a function returns, the memory reservations made for local variables

are revoked. In programming, reserving memory is known as memory
allocation and revoking memory reservations is known as memory
deallocation or freeing memory. The memory still exists, but it may be
overwritten by another function or no longer accessible to your program.

sample2.cpp

Memory
100

Memory

101
102
103
104
105
106
107
108
109
110
111
112
113

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

Arrays and Pointer Arithmetic
 When an array is declared the compiler allocates enough space for all the

elements of that array in memory. The array name now acts like a pointer to
the first element in the array although this is just an abstraction because
there is actually no address (pointer) stored in memory.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

}

Memory

MyArray ‘b’
‘c’

‘a’ 100
101
102
103
104
105
106
107
108
109
110
111
112
113

Arrays and Pointer Arithmetic
 An “actual” pointer will reserve memory to hold an address value.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

}

Memory

MyArray ‘b’
‘c’

‘a’

Ptr

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Arrays and Pointer Arithmetic
 When an array is referenced in a program without an index [] the compiler

“pretends” the name refers to a pointer that stores the address of the first
element of the array. This allows us to assign a pointer to the value of
MyArray.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

}

Memory

MyArray ‘b’
‘c’

‘a’

100Ptr

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Arrays and Pointer Arithmetic
 In C++, pointers can be modified with +,-,++, and -- operators. A key

difference between a pointer and an integer is that the statement Ptr = Ptr +
Num, is translated to Ptr = Ptr + Num*(the size of the element the pointer
points to). In this case, the pointer points to a char that is only allocated a
single byte in memory.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memory

MyArray ‘b’
‘c’

‘a’

101Ptr

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Arrays and Pointer Arithmetic
 Changing the value of a pointer with arithmetic operations is known as

pointer arithmetic. Among other things, it can be useful for traversing an
array.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memory

MyArray ‘a’
‘c’

‘a’

101Ptr

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Arrays and Pointer Arithmetic
 Pointer arithmetic and dereference can be combined into one statement to

access offsets of an array. When the compiler encounters an indexed array,
the statement is translated from array[index] into *(array+index).

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memory

MyArray ‘a’
‘d’

‘a’

101Ptr

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Arrays and Pointer Arithmetic
 The left hand side of the last two statements are equivalent.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memory

MyArray ‘a’
‘a’

‘a’

101Ptr

sample3.cpp
sample4.cpp

100
101
102
103
104
105
106
107
108
109
110
111
112
113

More about Pointers
 One pointer can be assigned to another if they

are the same type or a typecast is used
 Any pointer type may be assigned to a void* type

pointer
 Dereferencing an uninitialized pointer or a NULL

(0) pointer will cause a segmentation fault

sample5.cpp

References
 A subclass of pointers specific to C++
 Basically a restricted pointer that only points to one

object or variable
 Declared using ‘&’ operator instead of ‘*’ (int& IntRef)
 Only 1 dimensional (no int&&)
 Must be initialized (int& IntRef; will cause compiler

error)
 Once initialized, a reference cannot be “reseated” to

another object or variable
 No arithmetic operations allowed
 Automatically dereferenced so that only the value of

the variable referenced is accessible

sample6.cpp

References
 Another way to think of a reference is giving a

particular object or variable another name or alias
(sample7.cpp)

 C++ automatically creates a reference for function
calls that specify a reference in their parameter
list (sample8.cpp)

 (sample9.cpp)

	Pointers
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Arrays and Pointer Arithmetic
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	More about Pointers
	References
	Slide 22

