
S trings and Overloading operator[]

C-strings
 Recall that a C-string is implemented as a NULL

terminated array of type char

Char buffer[5];
strcpy(buffer,“hi!\n”);

cout<< buffer;
 When we use “” the compiler makes a NULL terminated

const char array and fills it with the characters the
programmer chose

 NOT every char array is a c-string, only those that are
NULL terminated
 Link to c-string review:

 http://www.cs.fsu.edu/~myers/c++/notes/strings.html

buffer 'h'

'i'

'!'

'\n'

'\0'

http://www.cs.fsu.edu/~myers/c++/notes/strings.html

C-string and c++
 We have some features in the standard C++ libraries

available to help us work more easily with C-style
strings
 The <cstring> library

 Contains functions for common string operations, such as copy, compare,
concatenate, length, search, tokenization, and more
 strlen(), strcpy(), strncpy(), strcat(), strncat(), strcmp(), strncmp(), strstr(), strtok()

 Special features in <iostream>:
 Special built-in functions for I/O handling of C-style strings, like the

insertion and extraction operators, get(), getline(), etc
 char str1[40];
 cout << str1; // insertion operator for strings
 cin >> str1; // extraction, reads up to white space
 cin.get(str1, 40, ','); // reads to delimiter (comma)
 cin.getline(sr1, 40); // reads to delimiter (default delimiter is newline), discards

 // delimiter

SAMPLE1.CPP

The Downside of C-strings
 Fixed length (when declared as static array)
 String name acts like a pointer

 Much must be passed in and out of functions

 Array bounds are not automatically enforced
 Must use cumbersome functions instead of intuitive

operators
 strcpy(str1, str2); instead of str1 = str2;
 (strcmp(str1, str2)) instead of (str1 == str2)
 strcat(str1, str2) instead of str1 += str2;

 The NULL char can be tricky
 See sample2.cpp, sample3.cpp, sample4.cpp

S tring Wish List
 We would like a more intuitive string interface

 str1 + str2 //concatenation
 str1 == str2 //compare str1 and str2
 str1 = “Hello!\n” //store “hello!\n” in str1

 We would like to keep some of the legacy functionality
 str1[4] // returns 4th char in str1
 str1[4] = 'a' //sets 4th char in str1 to 'a'
 &str1 returns the c-string (starting address) for str1

Overloading operator[]
 Usually done with two MEMBER functions
 Format: returntype operator[] (indextype index) const

 returntype& operator[](indextype index)
 The const member function allows us to read the

element from a const object
 The non-const member function returns a reference to

the element that can be modified
 See sample5.cpp
 The address operator can be overloaded just like any

other operator (sample6.cpp)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

