
USB Device Drivers

Michael Mitchell

USB Device Basics

 Universal Serial Bus (USB) connects between

a computer and peripheral devices

 Created to replace various slow buses

(parallel, serial, and keyboard connections)

 USB 2.0: up to 480Mb/s (35 MB/s)

 USB 3.0: up to 6Gb/s (625 MB/s)

USB Device Basics

 A USB device can never start sending data

without first being asked by the host controller

 Single-master implementation

 Host polls various devices

 A device can request a fixed bandwidth (for audio

and video I/O)

 Universal Serial Bus is a misnomer…

 Actually a tree built out of point-to-point links

 Links are four-wire cables (ground, power, and two

signal wires)

USB Device Basics – The Protocol

 USB protocol defines a set of standards that
any device can follow

 No need to write a driver for a device that is in
a predefined class and follows that standard,

 Predefined classes: storage devices,
keyboards, mice, joysticks, network devices,
and modems

 No defined standard for video devices and
USB-to-serial devices

 A driver is needed for every device

USB Device Basics – Driver Types

 Linux supports two types of USB drivers

 Drivers on a host system

 Control the USB devices that are plugged into it

 Drivers on a device (USB gadget drivers)

 Control how that single device looks to the host

computer as a USB device

 Some hardware devices can actually be both

 Called USB OTG (On The Go),

 E.g. Android 3.0+, some printers

USB Device Information

 View basic information about internally and

externally connected USB hubs and devices
using lsusb command

 More advanced usage covered later

USB Device Basics

Different

kernel

subsystems

An interface for

USB drivers to

access HW

USB Device Basics

USB drivers bind

to interfaces, not

the device

USB Overview

 A USB device has one or more configurations

 E.g., power and bandwidth requirements

 A configuration has one or more interfaces

 E.g., audio data, knobs for speakers

 An interface has one or more settings

 Different quality of services

 E.g., different frame sizes for digital cameras

 Also zero or more endpoints

 E.g., bulk, interrupt endpoints.

Endpoints

 The most basic form of USB communication

is through an endpoint

 Unidirectional: Carries data in one direction

 From the host to device (OUT endpoint)

 From the device to the host (IN endpoint)

Endpoints

 Four endpoint types

 CONTROL

 INTERRUPT

 BULK

 ISOCHRONOUS

Endpoints

 CONTROL

 Used for configuring the device, retrieving

information and status about the device, or

sending commands to the device

 Every device has a control endpoint called

endpoint 0

 Used by USB core to configure the device at

insertion time

 Transfers are guaranteed with reserved bandwidth

Endpoints

 INTERRUPT

 Transfer small amounts of data at a fixed rate

 For USB keyboards and mice

 Also used to control the device

 Not for large transfers

 Guaranteed reserved bandwidth

Endpoints

 BULK

 Transfer large amounts of data

 No data loss

 Not time guaranteed

 A BULK packet might be split up across multiple

transfers

 Used for printers, storage, and network devices

Endpoints

 ISOCHRONOUS

 Transfer large amount of data

 For real-time data collections, A/V devices

 Unlike bulk endpoints, no guarantees (potential

data loss)

 Control and bulk endpoints are used for

asynchronous data transfers

 Interrupt and isochronous endpoints are

periodic with reserved bandwidth

Endpoints

 Endpoint information is in struct

usb_endpoint_descriptor

 embedded in struct usb_host_endpoint

 Note: defined by the USB standard, so not

Linux looking

 Some important fields

 bEndpointAddress (8-bit)

 Use USB_DIR_OUT and USB_DIR_IN bit masks

to determine the direction of data flow

Endpoints

 bmAttributes

 Type of the endpoint

 & USB_ENDPOINT_XFERTYPE_MASK to

determine if the endpoint is of type
USB_ENDPOINT_XFER_ISOC,

USB_ENDPOINT_XFER_BULK, or

USB_ENDPOINT_XFER_INT

 wMaxPacketSize

 Maximum bytes that an endpoint can handle

 Larger transfers will be split into multiple transfers

Endpoints

 bInterval

 For interrupt endpoints, this value specifies the

milliseconds between interrupt requests for the

endpoint

Interfaces

 USB endpoints are bundled into interfaces

 A interface handles only one type of logical

connection (E.g., a mouse)

 Some devices have multiple interfaces

 E.g., a speaker

 One interface for buttons and one for audio stream

 USB interface may have alternate settings

 E.g., different settings to reserve different

amounts of bandwidth for the device

Interfaces

 Described via struct usb_interface

 Passed from USB core to USB drivers

 Some important fields
 struct usb_host_interface *altsetting

 An array of settings for this interface

 unsigned num_altsetting

 Number of alternative settings

Interfaces

 struct usb_host_interface *cur_altsetting

 A pointer into the altsetting array, denoting

the current setting

 int minor

 Minor number assigned by the USB core to the

interface

 Valid after a successful call to
usb_register_dev

Configurations

 USB interfaces are bundled into

configurations

 A USB device can have multiple

configurations

 Only one can be active at a time

 Can switch between them

 Described in struct usb_host_config

 embedded in struct usb_device

USB Webcam Device Example

Device
USB webcam

Configuration Configuration Active

Interface Audio

endpoint
control

endpoint
input

Interface Video

endpoint
control

endpoint
input

Configuration Configuration Standby

Interface Audio

endpoint
control

endpoint
input

Interface Video

endpoint
control

endpoint
input

USB and Sysfs

 Both USB devices and its interfaces are
shown in sysfs as individual devices

 A USB mouse device can be represented as
/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1

 The interface of the USB mouse device driver

is represented as
/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1/2-1:1.0

root_hub-hub_port:configuration.interface

USB and Sysfs

 For a two-level USB connection, the device

name is in the following format
 root_hub-hub_port-hub_port:configuration.interface

 In the sysfs directory, all USB information is

available

 E.g., idVendor, idProduct, bMaxPower

 bConfigurationValue can be written to

change the active configuration

USB and Sysfs

 More information is available in
/proc/bus/usb directory

 /sys/kernel/debug/usb/devices

 User-space programs can directly

communicate with USB devices via the

directory

 Also verbose output from lsusb: lsusb -v

USB Urbs (USB Request Block)

 Communication between the host and device

is done asynchronously using USB Request

Blocks (URBs).

 Similar to packets in network communications.

 Every endpoint can handle a queue of URBs.

 Every URB has a completion handler.

 Flexible: A driver may allocate many URBs for

a single endpoint, or reuse the same URB for

different endpoints.

 See Documentation/usb/URB.txt in kernel

sources.

USB Urbs (USB Request Block)

 struct urb

 Used to send and receive data between

endpoints

 Asynchronous

 Dynamically created

 Contains reference count for garbage collection

 Defined in <include/linux/usb.h>

 Must be created with the usb_alloc_urb()

function. Shouldn't be allocated statically or

with kmalloc().

 Must be deleted with usb_free_urb().

USB Urbs (USB Request Block)

 A typical lifecycle of an Urb

 A USB device driver creates an Urb

 Assigns it to a specific endpoint of a device

 Submits it to the USB core

 The USB core submits the Urb to specific USB

host controller driver

 The USB host controller driver processes the

Urb and transfers it to the device

 Notifies the USB device driver when the Urb is

done

USB Urbs (USB Request Block)

 An Urb can be cancelled by the driver or the

USB core if the device is removed from the

system

Life Cycle of an Urb

Creation

Assigned
to an endpoint

Submitted
to the USB core

Transfered
to the device

Deletion

can be
reused?

Notification at
transfer completion

yes

no

Device
driver

USB core
(controller

driver)

struct urb

 Important fields
/* destination USB device */

/* must be initialized by the USB driver before the urb can be

sent to the USB core */

struct usb_device *dev;

/* end point type information */

/* set to the return value from one of the usb send and

receive pipe functions */

/* must be initialized by the USB driver before the urb can be

sent to the USB core */

unsigned int pipe;

struct urb

/* assigned to one of the transfer flags */

unsigned int transfer_flags;

void *transfer_buffer; /* points to a kmalloced buffer */

dma_addr_t transfer_dma; /* buffer for DMA transfers */

/* buffer length for either the transfer_buffer or the

transfer_dma variable, 0 if neither buffers are used */

int transfer_buffer_length;

/* pointer to a setup packet for a control urb */

/* transferred before the data in the transfer buffer */

unsigned char *setup_packet;

/* DMA buffer for the setup packet for a control urb */

dma_addr_t setup_dma;

struct urb

/* pointer to the completion handler called by USB core */

usb_complete_t complete;

/* pointer to a data blob that can be set by the USB driver */

void *context;

/* actual length of data sent/received by the urb */

int actual_length;

/* accessed in the completion handler */

/* see status values */

int status;

/* the initial frame number for isochronous transfers */

int start_frame;

struct urb

/* polling interval for the urb */

/* valid only for interrupt or isochronous urbs */

/* for slow devices, the unit is in frames or milliseconds */

/* for other devices, the unit is in 1/8 milliseconds */

int interval;

/* the number of isochronous transfer buffers handled by this

urb */

/* must be set by the USB driver before the urb is sent to the

USB core */

int number_of_packets;

/* number of isochronous transfers with errors */

int error_count;

struct urb

/* allows a single urb to define a number of isochronous

transfers at once */

struct usb_iso_packet_descriptor iso_frame_desc[0];

struct usb_iso_packet_descriptor {

 unsigned int offset; /* byte into the transfer buffer */

 unsigned int length; /* length of the transfer buffer */

 /* length of data received into the transfer buffer */

 unsigned int actual_length;

 unsigned int status; /* see status values */

};

USB send and receive pipe functions

/* specifies a control OUT endpoint for the specified USB

device with the specified endpoint number */

unsigned int usb_sndctrlpipe(struct usb_device *dev,

 unsigned int endpoint);

/* specifies a control IN endpoint for the specified USB

device with the specified endpoint number */

unsigned int usb_rcvctrlpipe(struct usb_device *dev,

 unsigned int endpoint);

/* specifies a bulk OUT endpoint for the specified USB device

with the specified endpoint number */

unsigned int usb_sndbulkpipe(struct usb_device *dev,

 unsigned int endpoint);

USB send and receive pipe functions

/* specifies a bulk IN endpoint for the specified USB device

with the specified endpoint number */

unsigned int usb_rcvbulkpipe(struct usb_device *dev,

 unsigned int endpoint);

/* specifies a interrupt OUT endpoint for the specified USB

device with the specified endpoint number */

unsigned int usb_sndintpipe(struct usb_device *dev,

 unsigned int endpoint);

/* specifies a interrupt IN endpoint for the specified USB

device with the specified endpoint number */

unsigned int usb_rcvintpipe(struct usb_device *dev,

 unsigned int endpoint);

USB send and receive pipe functions

/* specifies a isochronous OUT endpoint for the specified USB

device with the specified endpoint number */

unsigned int usb_sndisocpipe(struct usb_device *dev,

 unsigned int endpoint);

/* specifies a isochronous IN endpoint for the specified USB

device with the specified endpoint number */

unsigned int usb_rcvisocpipe(struct usb_device *dev,

 unsigned int endpoint);

URB Transfer flags

 URB_SHORT_NOT_OK

 Partial read should be treated as an error by

the USB core

 URB_ISO_ASAP

 If the driver wants the isochronous urb to be

scheduled as soon as bandwidth allows

 Set the start_frame variable

URB Transfer flags

 URB_NO_TRANSFER_DMA_MAP

 Set when the urb contains a DMA buffer to be

transferred

 Tells the USB core to use the buffer pointed by
the transfer_dma pointer, not the

transfer_buffer pointer

URB Transfer flags

 URB_NO_SETUP_DMA_MAP

 Used for control urbs with DMA buffer already

set up

 Tells the USB core to use the buffer pointed by
the setup_dma pointer instead of the

setup_packet pointer

 URB_ASYNC_UNLINK

 Tells usb_unlink_urb() to return

immediate and unlink the urb in the

background

URB Transfer flags

URB_ZERO_PACKET

 Tells a bulk out urb finishes by sending an

empty packet when the data is aligned to an

endpoint packet boundary

 URB_NO_INTERRUPT

 Indicates that the HW may not generate an

interrupt when the urb is finished

 Used when queuing multiple urbs to the same

endpoint

 Used by USB core to perform DMA transfers

URB Status Values

 0

 The urb transfer was successful

 For isochronous urbs, only indicates whether

the urb has been unlinked

 Detailed status in iso_frame_desc

 -ENOENT

 Urb stopped by usb_kill_urb

 -ECONNRESET

 Urb was unlinked by usb_unlink_urb

 transfer_flags set to URB_ASYNC_UNLINK

URB Status Values

 -EINPROGRESS

 Urb still being processed by the USB host

controller

 A bug if seen at the driver level

 -EPROTO (a HW problem)

 A bitstuff error happened during the transfer

 No response packet was received

 -EILSEQ (a HW problem)

 CRC mismatch

URB Status Values

 -EPIPE

 The endpoint is now stalled

 If not a control endpoint, can clear this error
with usb_clear_halt

 -ECOMM

 Data received faster than it could be written to

system memory

 -ENOSR

 Data cannot be retrieved from the system

memory during the transfer fast enough to

keep up with the requested USB data rate

URB Status Values

 -EOVERFLOW (a HW problem)

 When the endpoint receives more data than

the specified max

 -EREMOTEIO

 Full amount of data was not received

 Occurs when the URB_SHORT_NOT_OK is set

 -ENODEV

 The USB device is gone from the system

URB Status Values

 -ESHUTDOWN

 Host controller driver has been disabled or

disconnected

 Urb was submitted after the device was

removed

 Configuration change while the urb was

submitted

URB Status Values

 -EXDEV

 Only for a isochronous urb

 Transfer was partially completed

 -EINVAL

 Incorrect function parameter

 ISO madness, if this happens: Log off and go

home

USB URB debugging

 Real-time capture of USB URBs is possible

using usbmon

 modprobe usbmon

 # cat

/sys/kernel/debug/usb/usbmon/

 0s 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u

 # cat

/sys/kernel/debug/usb/usbmon/3u >

/tmp/3.mon.out

Creating and Destroying Urbs

 All URBs need to be created dynamically

 Or the reference count would not work

 To create a URB, call
struct urb *usb_alloc_urb(int iso_packets,

 gfp_t mem_flags);

 Returns pointer to the URB or NULL on failure

 iso_packets: number of isochronous

packets this urb should contain

 mem_flags: same as kmalloc flags

 To destroy a urb, call
void usb_free_urb(struct urb *urb);

Interrupt urbs

 To initialize an interrupt urb, call
void

usb_fill_int_urb(struct urb *urb, struct usb_device *dev,

 unsigned int pipe, void *transfer_buffer,

 int buffer_length, usb_complete_t complete,

 void *context, int interval);

 urb: a pointer to the urb to be initialized

 dev: The destination USB device

 pipe: the destination endpoint of this urb

Interrupt urbs

 transfer_buffer: a pointer to a

kmalloced buffer

 buffer_length: the length of the transfer

buffer

 complete: pointer to the completion handler

 context: pointer to the blob, retrieved by the

completion handler function

 interval: scheduling interval for this urb

Bulk urbs

 To initialize an bulk urb, call
void

usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev,

 unsigned int pipe, void *transfer_buffer,

 int buffer_length, usb_complete_t complete,

 void *context);

 Similar to interrupt urb initialization

 Exception: No final interval parameter

Control urbs

 To initialize a control urb, call
void

usb_fill_control_urb(struct urb *urb, struct usb_device *dev,

 unsigned int pipe,

 unsigned char *setup_packet,

 void *transfer_buffer, int buffer_length,

 usb_complete_t complete, void *context);

 Similar to bulk urb initialization

 setup_packet: points to the setup packet data

 Also, does not set the transfer_flags

Isochronous urbs

 Have no initialization functions

 Need to be initialized by hand
/* from /drivers/media/video/usbvideo/konicawc.c */

urb->dev = dev;

urb->context = uvd;

urb->pipe = usb_rcvisocpipe(dev, uvd->video_endp - 1);

urb->interval = 1;

urb->transfer_flags = URB_ISO_ASAP;

urb->transfer_buffer = cam->sts_buf[i];

urb->complete = konicawc_isoc_irq;

urb->number_of_packets = FRAMES_PER_DESC;

urb->transfer_buffer_length = FRAMES_PER_DESC;

for (j=0; j < FRAMES_PER_DESC; j++) {

 urb->iso_frame_desc[j].offset = j;

 urb->iso_frame_desc[j].length = 1;

}

Submitting Urbs

 To send a urb to the USB core, call
int usb_submit_urb(struct urb *urb, gfp_t mem_flags);

 urb: a pointer to the urb

 mem_flags: same as kmalloc flags

 GFP_KERNEL, GFP_ATOMIC, etc.

 Should not access a submitted urb until the
complete function is called

Completing Urbs: The Completion

Callback Handler

 Called exactly once when the urb is

completed

 When this function is called, the USB core is

finished with the urb, and control is returned to

the device driver

Completing Urbs: The Completion

Callback Handler

 The completion handler is called under three

conditions

 The urb is successfully sent to the device and

acknowledged

 An error has occurred

 Check the status variable

 The urb was unlinked (the submission was

cancelled) when a device is removed from the

system

Canceling Urbs

 To stop a submitted urb, call
int usb_kill_urb(struct urb *urb);

 Used when the device is disconnected from

the system
int usb_unlink_urb(struct urb *urb);

 Tells the USB core to stop an urb

 Returns before the urb is fully stopped

 Useful while in an interrupt handler

 Requires setting the URB_ASYNC_UNLINK

Actually writing a USB Driver

 Similar to a pci_driver

 Driver registers its driver object with the USB

subsystem

 Later uses vendor and device identifiers to tell

if its hardware has been installed

What Devices Does the Driver

Support?

 struct usb_device_id lists supported

types of USB devices

 Important fields

 __u16 match_flags

 Determines which fields in the structure the

device should be matched against

 Check include/linux/mod_devicetable.h

 __u16 idVendor

 __u16 idProduct

What Devices Does the Driver

Support?

 __u16 bcdDevice_lo

 __u16 bcdDevice_hi

 Define low and high ends of the range of the

vendor-assigned product version number

 Expressed in binary-coded decimal (BCD)

 __u8 bDeviceClass

 __u8 bDeviceSubClass

 __u8 bDeviceProtocol

 Define the class, subclass, and protocol of the

device

What Devices Does the Driver

Support?

 __u8 bInterfaceClass

 __u8 bInterfaceSubClass

 __u8 bInterfaceProtocol

 Class, subclass, and protocol of the individual

interface

 kernel_ulong_t driver_info

 Used to differentiate different devices in the probe

callback function

What Devices Does the Driver

Support?

 To initialize usb_device_id, use the

following macros
USB_DEVICE(vendor, product)

 Creates a usb_device_id that can be used to

match only the specified vendor and product IDs
USB_DEVICE_VER(vendor, product, lo, hi)

 Creates a usb_device_id that can be used to

match only the specified vendor and product IDs

within a version range
USB_DEVICE_INFO(class, subclass, protocol)

 Creates a usb_device_id that can be used to

match a specific class of USB devices

What Devices Does the Driver

Support?
USB_INTERFACE_INFO(class, subclass, protocol)

 Creates a usb_device_id that can be used to

match a specific class of USB interfaces

 Example
/* table of devices that work with this driver */

static struct usb_device_id skel_table[] = {

 { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },

 { } /* Terminating entry */

};

/* allow user-space tools to figure out what devices this

driver can control */

MODULE_DEVICE_TABLE(usb, skel_table);

Registering a USB Driver

 The main structure for a USB driver is
struct usb_driver

 Important fields
 struct module *owner

 Set to THIS_MODULE to track the reference count

of the module owning this driver
 const char *name

 Points to a unique driver name

Registering a USB Driver

 const struct usb_device_id *id_table

 Pointer to the list of supported USB devices

 If you want your driver always be called for every

USB device, create an entry that sets only the
driver_info field

static struct usb_device_id usb_ids[] = {

 {.driver_info = 42},

 { }

};

Registering a USB Driver

 int (*probe) (struct usb_interface *intf,

 const struct usb_device_id *id)

 Called when the USB core thinks it has a struct

usb_interface that this driver can handle

 The USB driver should initialize the usb interface

and return 0, or return a negative error number on

failure
 void (*disconnect) (struct usb_interface *intf)

 Called when the usb_interface has been

removed from the system, or when the driver is

being unloaded

Registering a USB Driver

 To create a struct usb_driver, only five

fields need to be initialized

static struct usb_driver skel_driver = {

 .owner = THIS_MODULE,

 .name = "skeleton",

 .id_table = skel_table,

 .probe = skel_probe,

 .disconnect = skel_disconnect,

};

Registering a USB Driver

 To register a USB driver call
usb_register_driver

 Example

static int __init usb_skel_init(void) {

 int result;

 /* register this driver with the USB subsystem */

 result = usb_register(&skel_driver);

 if (result)

 err("usb_register failed. Error number %d", result);

 return result;

}

Registering a USB Driver

 To unload a USB driver call
usb_deregister

 Example

static void __exit usb_skel_exit(void) {

 /* deregister this driver with the USB subsystem */

 /* invokes disconnect() within usb_deregister() */

 usb_deregister(&skel_driver);

}

Probe and Disconnect in Detail

 Called in the context of the USB hub kernel

thread

 Sleep is allowed

 However, should do most of the work when

the device is opened by a user

 USB core handles addition and removal of USB

devices in a single thread

 A slow device driver can slow down USB device

detection

Probe and Disconnect in Detail

 Probe function should

 Initialize local structures that it might use to

manage the USB device

 Save any information that it needs to the local

structure

 Detect endpoint address and buffer sizes

 Example usb/usb-skeleton.c

Advanced USB logging/debugging

 For actual USB driver creation, reverse

engineering often required

 Comprehensive capture, logging and

debugging of all USB communications can be

done using Wireshark

