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1.	Background	

Android	kernel	vulnerabilities	are	dangerous.	Attackers	can	exploit	kernel	vulnerabilities	to	root	
Android	devices	and	achieve	malicious	goals.	If	the	kernel	gets	compromised,	all	security	
mechanisms	relying	on	kernel	integrity	(e.g.	app	sandboxing,	payment/fingerprint	framework,	
etc.)	will	be	broken.	TrustZone,	the	last	line	of	defense	for	Android	devices,	will	also	be	
threatened	as	the	compromised	kernel	enables	the	attacker	to	inject	malicious	payloads	into	
TrustZone.	
	
So,	it	is	ideal	to	get	rid	of	kernel	vulnerabilities.	However,	more	and	more	kernel	vulnerabilities	
have	been	unveiled	each	month	(shown	in	Figure	1).	On	one	hand,	this	is	a	good	trend	
indicating	more	and	more	effort	has	been	spent	on	securing	the	Android	kernel;	on	the	other	
hand,	kernel	vulnerabilities	that	have	been	disclosed	but	remain	unfixed	have	become	the	
largest	threat	for	Android	users.	Having	been	in	the	spotlight	for	weeks	or	even	months,	they	
usually	have	public	and	stable	exploits,	and	thus	become	underground	businesses’	favorite.	For	
example,	from	the	recent	popular	malware	incidents	with	global	impact	[1-4],	one	can	always	
find	a	root	toolkit	inside.	Such	root	exploits	are	either	from	public	Proof-of-Concept	(PoC),	or	
copied	from	one-click	root	apps.	Consequences	of	these	malware	include	frauds,	credential	
leakage,	fingerprint	leakage,	losing	money	from	banking/payment/financial	accounts,	or	even	
remote	controls.	
	

	
Figure	1:	Number	of	kernel	vulnerabilities	disclosed	in	monthly	Android	Security	Bulletin	
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People	commonly	claim	that	“using	Android	is	easier	to	be	attacked”,	or	“Android	is	less	secure	
than	iOS”.	Actually,	if	we	simply	compare	the	kernel	vulnerabilities	disclosed	in	each	iOS	release	
(Table	1),	it	appears	that	iOS’	kernel	vulnerability	disclosure	frequency	is	not	less	than	
Android’s.	So	the	root	cause	of	the	problem	is	not	only	that	Android	has	frequent	vulnerability	
disclosures,	but	also	because	these	vulnerabilities	remain	unfixed	over	a	long	time.		
	

iOS	Version	 Release	Date	 Kernel	Vulnerability	#	 Android	#	In	This	Period	
8.4.1	 8/13/15	 3	 -	
9	 9/16/15	 12	 1	
9.1	 10/21/15	 6	 -	
9.2	 12/8/15	 5	 1	
9.2.1	 1/19/16	 4	 3	
9.3	 3/21/16	 9	 8	
9.3.2	 5/16/16	 11	 22	

Table	1:	iOS	kernel	vulnerabilities	disclosed	in	each	release,	compared	to	that	of	Android.	Note	that	the	number	of	vulnerabilities	
may	not	be	directly	comparable	due	to	different	threat	levels.	But	the	comparison	can	still	provide	a	rough	sense	that	iOS	is	not	

born	as	“bullet-proof”;	it	is	more	secure	just	because	it	can	get	timely	patches	in	a	large	scale.	

	

2.	Why	Are	Android	Kernel	Vulnerabilities	Long-lasting?		

Why	Android	cannot	get	these	kernel	vulnerabilities	patched	in	a	timely	manner	like	iOS?	There	
are	mainly	three	causes:	

1) The	long	patching	chain	delays	the	patch	effective	date;	
2) Fragmentation	makes	it	challenging	to	adapt	the	patches	to	all	devices;	
3) Capability	mismatching	between	device	vendors	and	security	vendors.	

	
These	causes	are	discussed	in	detail	below.	
	
2.1	The	Long	Patching	Chain	

As	shown	in	Figure	2,	it	usually	takes	months	or	even	years	for	a	patch	to	pass	all	stages	and	
land	on	users’	phones,	not	to	mention	that	some	patches	may	be	discarded	in	one	of	these	
stages.		
	
For	example,	in	an	academic	study	[5]	,	the	authors	claim	that	from	reverse-engineering	a	
famous	root	app,	they	found	at	least	10	kernel	exploits	that	have	never	been	reported	to	
vendors.	In	this	case,	the	vulnerabilities	have	been	identified	and	made	public	(since	everyone	
can	reverse-engineer	that	famous	root	app	to	understand	the	vulnerabilities,	or	even	reuse	the	
root	exploit	library	directly),	but	the	vendors	did	not	know	their	existence,	so	there	is	no	patch	
released	through	the	official	patching	channel	to	patch	them.	This	is	the	scheme	where	the	
patching	chain	stops	at	the	very	first	stage.	
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Figure	2:	The	long	patching	circle	of	Android	kernel	vulnerabilities	

As	another	example,	Google	Project	Zero	identified	a	bug	[6]	but	somehow	it	was	not	applied	to	
vendor’s	kernel	branch.	So	according	to	this	post,	“the	majority	of	Android	kernels	based	on	3.4	
or	3.10	are	still	affected	despite	the	patch	being	available	for	6	months”.	This	is	the	scheme	
where	the	patching	chain	got	delayed	before	reaching	the	third	stage.	
	
The	first	three	steps	could	be	skipped	if	the	phone	vendors	are	willing	to	allocate	enormous	
resources	and	manpower	to	identify	kernel	vulnerabilities	and	release	patches	timely.	However,	
the	patching	chain	would	still	be	delayed	by	the	carriers	[7]	,	who	need	to	thoroughly	test	
whether	a	proposed	patch	affects	the	stability	and	service	quality	of	the	carrier	phones.		
	
Finally,	when	an	Over-The-Air	(OTA)	patch	arrives	at	the	devices,	users	may	not	be	willing	to	
take	the	patch	immediately	since	most	of	the	cold	patches	require	phone	rebooting	to	become	
effective.	So	the	concern	of	interrupting	user	experience	further	delays	the	traditional	patches’	
effective	date.	
	
2.2	Fragmentation	

The	Android	ecosystem	is	open.	There	are	countless	vendors	and	each	vendor	usually	has	many	
phone	models	(Figure	3).	The	different	patching	status	of	various	models	causes	fragmentation.	
It	is	tedious	to	manually	port	a	patch	to	so	many	platforms,	which	further	slows	down	the	
patching	process.	
	

	
Figure	3:	Android	device	fragmentation,	cited	from	[8]		
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Google	also	provides	official	statistics	of	fragmented	Android	version	distribution	[9]	.	The	
following	facts	stand	out:	

1) Lollipop	(Android	5.0)	was	released	in	November	2014,	but	as	of	July	21,	2016,	51.6%	of	
the	devices	are	still	older	than	that.	This	indicates	that	the	whole	Android	ecosystem	is	
slow	to	catch	up	with	the	latest	Android	release.	

2) Google	has	stopped	providing	patches	for	Android	older	than	4.4,	but	as	of	July	21,	
2016,	21.5%	of	the	devices	are	still	older	than	that.	This	means	that	more	than	1/5	of	
the	devices	will	never	receive	timely	patches.	

	
Making	the	situation	worse,	the	world’s	largest	Android	market,	China,	blocks	network	access	
to	Google,	so	Chinese	devices	cannot	obtain	OTA	patches	directly	from	Google.	Due	to	the	
same	reason,	Chinese	devices	cannot	report	their	patching	level	to	Google,	thus	Google’s	
Android	version	statistics	do	not	include	Chinese	devices	–	if	they	do,	the	statistics	should	look	
even	more	upsetting.	We	randomly	collected	the	Android	versions	of	nearly	two	millions	of	
devices	with	Baidu	apps	installed,	and	observed	the	following	facts:	

1) Lollipop	(Android	5.0)	was	released	in	November	2014,	but	as	of	July	21,	2016,	80%	of	
the	Chinese	devices	are	still	older	than	that.	

2) Google	has	stopped	providing	patches	for	Android	older	than	4.4,	but	as	of	July	21,	
2016,	42%	of	the	Chinese	devices	are	still	older	than	that.		

	
Therefore,	the	problem	is	not	only	to	adapt	patches	to	lots	of	platforms,	but	also	to	adapt	
patches	for	so	many	old	devices.	Most	device	vendors	focus	more	on	promoting	new	devices	
rather	than	providing	support	for	devices	more	than	2	years	old.	So	although	there	are	still	a	
considerable	amount	of	users	sticking	to	old	devices,	they	will	unfortunately	not	receive	timely	
patches.	
	
2.3	Capability	Mismatching	

Device	vendors	have	privileges	high	enough	to	apply	the	patches	on	the	phone.	They	can	also	
adapt	the	patches	based	on	the	source	code	they	possess	–	it	is	tedious,	but	still	feasible.	But	as	
mentioned	above,	their	first	priority	is	not	to	patch	the	devices	to	bullet-proof.	Moreover,	
exploits	and	defenses	are	not	their	area	of	expertise.	
	
On	the	contrary,	others	have	interest	to	provide	timely	patches	for	devices,	like	security	
vendors	(for	fame	and	profit)	and	developers	of	apps	relying	on	Android	security	(for	risk	
control).	They	have	better	understanding	of	the	real-world	threats	too.	However,	since	device	
vendors	usually	don’t	publish	the	exact	up-to-date	kernel	source	code	for	all	devices,	it	is	
extremely	difficult	for	third	parties	to	adapt	patches	for	all	devices.	It	is	also	challenging	for	
third	parties	to	apply	patches	since	they	don’t	have	enough	privileges.	
	
We	call	this	dilemma	as	“Capability	Mismatching”	–	those	capable	to	apply	the	patch	do	not	
have	highest	interest	or	expertise	to	generate	the	patch,	while	those	capable	to	generate	the	
patch	do	not	have	capability	to	adapt	and	apply	the	patches.	This	is	the	third	but	still	an	
important	cause	of	the	Android’s	vulnerabilities	remaining	unfixed	for	a	long	time.	
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Now	that	we	have	identified	the	three	major	causes,	we	can	explain	why	Android	appears	to	be	
less	secure	than	iOS:		

1) Apple	controls	the	entire	supply	chain,	from	hardware	to	software,	and	have	more	
rights	speaking	to	carriers,	so	its	patching	chain	is	significantly	shorter.	

2) The	number	of	iOS	device	variants	is	much	smaller	than	Android’s,	and	Apple	has	the	
source	code	for	them,	so	it	is	much	easier	for	Apple	to	generate	and	adapt	patches	for	
all	variants.	

3) From	time	to	time,	Apple	refuses	to	sign	old	versions,	so	devices	can	only	be	upgraded	
and	downgrading	is	not	possible.	

	

3.	Case	Studies	of	Long-lived	Kernel	Vulnerabilities	

Here	we	use	three	widely	exploited	cross-platform	kernel	vulnerabilities	for	case	studies.	The	
first	one	is	CVE-2014-3153,	known	as	“Towelroot”.	The	vulnerability	is	due	to	that	the	
futex_requeue	function	in	kernel	through	3.14.5	does	not	ensure	that	calls	have	two	
different	futex	addresses,	which	allows	local	users	to	gain	privileges.	At	its	time	being	there	was	
no	Android	Security	Bulletin	issued,	so	we	conservatively	count	the	first-known	date	as	the	time	
when	this	vulnerability	was	firstly	patched	in	the	upstream	kernel:	June	3,	2014	[10]	.		
	
The	second	one	is	CVE-2015-3636,	known	as	“Ping	Pong	Root”.	The	ping_unhash	function	in	
kernel	before	4.0.3	does	not	initialize	a	certain	list	data	structure	during	an	unhash	operation,	
which	allows	local	users	to	gain	privileges	or	cause	a	denial	of	service.	The	Android	Security	
Advisory	for	this	vulnerability	was	published	on	September	9,	2015	[11]	.	
	
The	third	one	is	CVE-2015-1805,	where	the	pipe_read	and	pipe_write	implementations	
in	kernel	before	3.16	allows	local	users	to	gain	privileges	via	a	crafted	application.	The	upstream	
patching	date	is	April	3,	2014	[12]	.	This	vulnerability	is	very	interesting	because	it	was	fixed	in	
upstream	but	was	not	assigned	a	CVE	number	until	February,	2015.	However,	no	Android	patch	
was	provided	for	this	vulnerability	until	early	2016	when	researchers	notified	Google	that	the	
issue	could	be	exploited	and	had	been	abused	in	the	wild.	The	Android	Security	Advisory	for	
this	vulnerability	was	published	on	March	18,	2016	[13]	.	
	
Figure	4	shows	the	elapsed	days	from	the	advisory	publication	date	for	the	three	representative	
kernel	vulnerabilities.	The	more	days	elapsed,	the	more	victims	are	exploited	due	to	the	
vulnerability.	Note	that	even	the	shortest	period	(the	one	for	CVE-2015-1805)	has	been	longer	
than	120	days.		
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Figure	4:	Days	from	advisory	publication	date	to	now	(July	2016)		for	the	three	famous	"one-to-root-all"	kernel	vulnerabilities	

It	is	against	our	user-agreement	to	exploit	the	devices	to	detect	whether	a	vulnerability	exists	
or	not.	So	we	simply	collected	the	kernel	version	and	build	timestamp	from	nearly	two	millions	
of	devices	in	China	with	Baidu	apps	installed.	We	assume	that	if	a	kernel	was	built	earlier	than	
the	advisory	date,	it	is	highly	likely	that	it	is	unpatched	for	the	corresponding	vulnerability;	
otherwise	it	is	assumed	as	patched.	This	conservative	assumption	should	underestimate	the	
rate	of	vulnerable	devices	because	few	device	vendors	can	catch	up	with	Google’s	Android	
Security	Advisories.	As	shown	in	Figure	5,	this	conservative	counting	still	yields	a	large	portion	
of	vulnerable	devices.	It	is	sad	to	see	that	so	many	users	are	still	under	root	exploit	attack	even	
after	months	or	years	of	the	vulnerability’s	disclosure.	
	

	
Figure	5:	Vulnerability	statistics	collected	from	Chinese	Android	device	

4.	AdaptKpatch:	Adaptive	Kernel	Live	Patching	

How	can	we	solve	the	problem	then?	To	shorten	the	long	patching	chain,	both	the	academia	
and	industry	have	proposed	kernel	live	patching	methods.	Representative	implementations	
include	kpatch	[14]	,	ksplice	[15]	,	kGraft	[16]	,	and	Linux	upstream’s	livepatch	[17]	.	Details	may	
vary	for	different	solutions,	but	they	usually	share	the	following	steps:	

1) Load	new	code	into	memory,	and	make	it	accessible	(exported)	to	existing	code;	
2) Perform	safety	check,	to	avoid	the	mixed	context	(old	&	new	code	invoked	in	the	same	

call	stack);	
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3) Switching	execution	from	old	code	to	the	new	code.	
	
However,	we	still	have	two	problems	to	address	–	the	fragmentation	issue	and	the	capability	
mismatching	issue.	All	the	existing	kernel	live	patching	mechanisms	require	source	code.	The	
patching	code	is	generated	by	comparing	the	difference	of	two	binaries,	one	compiled	from	the	
old	source	code	and	the	other	from	the	patched	source	code.	Once	generated,	this	certain	
piece	of	patching	code	can	only	be	applied	to	the	certain	kernel	build;	it	cannot	be	installed	to	
other	platforms	due	to	symbol	dependency,	etc.	
	
So	is	there	a	way	to	automatically	adjust	binary	patches	to	adapt	to	different	device	models	
with	different	Android	kernel	versions?	The	answer	is	yes.	In	the	7th	HITB	Conference	[18]	,	we	
have	already	presented	AdaptKpatch	to	perform	automatic	patch	adaption	to	all	Android	
devices,	as	shown	in	Figure	6.	
	

	
Figure	6:	Adaptive	kernel	live	patching	procedures	without	phone	vendors’	cooperation	[18]		

To	be	brief,	when	our	patching	agent	lands	on	a	phone	and	detects	kernel	vulnerabilities	that	
can	be	exploited	to	gain	root,	it	will	notify	the	user	about	the	vulnerabilities	and	ask	whether	
he/she	wants	to	fix	it.	Once	permitted,	the	patching	agent	roots	the	device	and	collects	
necessary	information	needed	for	adaption,	including	kernel	versions,	symbol	addresses,	
symbol	CRCs,	etc.	Next,	depending	on	whether	the	device	provides	insmod	or	the	(k)mem	
device,	the	agent	either	downloads	a	kernel	module	template	or	a	binary	code	template	for	
patching,	and	fills	the	collected	info	into	the	template	to	generate	the	adapted	patch.	This	
procedure	solves	the	symbol	dependencies	of	the	patch	and	fulfills	kernel	checks,	so	the	
generated	patch	can	be	inserted	into	the	kernel	via	insmod	or	(k)mem	without	a	problem.	
Once	the	patch	can	be	executed	in	the	kernel	mode,	the	rest	of	the	patching	procedure	is	the	
same	as	other	existing	solutions	like	kpatch/ksplice/kGraft	etc.	This	enables	third	party	vendors,	
who	do	not	have	access	to	the	exact	source	code	of	the	device	kernel	and	drivers,	to	perform	
live	patching.		
	
Note	that	AdaptKpatch	only	performs	hot	patching	–	it	does	not	modify	the	binaries	on	the	file	
system,	so	it	does	not	conflict	with	the	static	integrity	protection	mechanisms	(such	as	the	
Secure	Boot).	On	rebooting,	all	the	patches	are	gone	so	the	framework	should	be	launched	in	
the	very	early	stage	of	the	booting	process	and	reload	the	patches.	A	boot	flag	is	used	to	detect	
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if	last	booting	failed.	In	that	case,	AdaptKpatch	will	perform	failover	without	loading	the	
problematic	hot	patches.	
	
This	framework	can	be	further	improved	if	there	exists	a	joint	effort	between	the	device	vendor	
and	the	third	party	patch	developer.	In	the	above	design,	the	patching	agent	needs	to	probe	
kernel	vulnerabilities.	However,	it	is	difficult	to	precisely	probe	kernel	bugs	without	disturbing	
user	experience.	So	it	would	be	better	if	the	device	vendor	can	provide	a	list	of	vulnerabilities	
corresponding	to	each	kernel	build.	This	should	be	easy	for	device	vendors	since	they	possess	
the	source	code.	Moreover,	it	would	be	even	better	if	the	device	vendor	can	integrate	a	
patching	module	in	the	kernel.	This	saves	the	third	party	from	rooting	the	device.	Nevertheless,	
these	improvements	are	not	required	but	can	highly	boost	the	efficiency.	
	

	
Figure	7:	Adaptive	kernel	live	patching	framework	with	phone	vendor's	cooperation	

The	framework	with	device	vendors’	cooperation	is	shown	in	Figure	7.	The	user-space	agent	
communicates	to	cloud	for	vulnerabilities	of	the	current	kernel	build,	and	downloads	patch	
templates	accordingly.	After	prompting	to	the	user	and	getting	authorized,	it	sends	the	patches	
to	the	kernel	patching	module.	The	SELinux	policy	enforces	that	only	the	agent	can	talk	to	the	
patching	module.	The	patches	should	be	signed	so	that	the	kernel	patching	module	can	reject	
illegal	code	pieces.	The	patches	should	also	be	versioned	so	they	can	only	be	upgraded	without	
being	downgraded.	After	passing	the	verification,	the	kernel	patching	module	then	executes	the	
patch	and	can	later	undo	the	patch.	The	kernel	patching	module	should	also	monitor	the	
system	status	for	potential	issues	(and	perform	patch	failover	if	there	is	an	issue).	
	
Now	the	device	vendors	can	lay	back	and	no	longer	need	to	worry	about	generating	patches,	
and	the	motivated	third	parties	can	focus	on	providing	patches	without	worrying	about	
adaption.	Everything	seems	perfect,	except	one	concern	–	how	can	the	device	vendors	trust	the	
third	party	patches	before	signing	and	deploying	them?	To	ensure	the	security	of	the	patches,	
we	need	a	multi-stage	vetting	mechanism:	

1) Vendor	qualification:	the	patch	framework	only	accepts	patches	submitted	from	pre-
qualified	vendors	with	security	expertise	and	good	reputation.	

2) Patch	security	vetting:	the	submitted	patches	should	be	reviewed	and	signed-off	by	
other	members	in	this	alliance	before	deployment.	
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3) Reputation	ranking:	after	being	deployed	on	the	devices,	the	patches	are	subject	to	user	
feedback.	Any	unstable	or	suspicious	patches	will	be	immediately	removed	and	the	
corresponding	vendor’s	reputation	will	be	lowered.	This	is	similar	to	the	app	store.	

	
This	alliance-based	vetting	mechanism	can	significantly	reduce	backdoors	and	new	
vulnerabilities	introduced	by	the	patches.	But	as	long	as	the	patches	are	in	the	native	form	
(compiled	from	C	and	execute	directly	in	kernel	mode),	it	does	not	eliminate	security	issues.	
Especially	when	critical	vulnerabilities	are	found	and	the	phone	vendors	or	the	users	want	to	
deploy	patches	in	a	few	days,	it	is	still	challenging	to	thoroughly	review	the	binary	patches.	That	
is	why	we	have	an	alternative:	LuaKpatch.	
	

5.	LuaKpatch:	More	Flexibility,	Yet	More	Constraint	
	
5.1	Design	Principles	

If	vendors	have	enough	time	(e.g.,	two	weeks)	to	review	the	patches	and	run	thorough	tests	
against	the	patches,	it	should	be	fairly	safe	to	deploy	the	patches	using	AdaptKpatch	described	
above.	However,	if	critical	vulnerabilities	arise	and	need	to	be	hot-patched	in	two	days,	it	is	
dangerous	to	load	hasty	patches	into	millions	of	devices.	So	we	need	a	mechanism:	

1) powerful	enough	to	block	most	threats;	
2) agile	enough	for	quick	patch	generation;	
3) yet	restrictive	enough	to	confine	possible	damages	caused	by	the	patches.		

		
To	fulfill	the	requirements,	we	can	insert	a	type-safe	dynamic	language	engine	(such	as	Lua)	
into	the	kernel	to	execute	patches.	Programs	written	in	dynamic	languages	are	easy	to	update	
and	are	naturally	“jailed”	in	the	language	virtual	machine	(VM).	The	type	safety	feature	
prevents	the	patches	from	introducing	new	vulnerabilities	that	can	be	attacked.	
	
Then	how	should	we	expose	the	kernel	to	the	patching	engine	to	ensure	minimum	surface	
exposed	but	capable	enough	to	do	the	patching	work?	After	examining	most	of	the	recent	
kernel	exploits,	one	can	find	that	in	order	to	trigger	the	vulnerability,	the	attacker	needs	to	feed	
malicious	data	inputs	into	the	target	function.	This	is	illustrated	in	Figure	8	–	regardless	of	the	
attacker’s	tricks,	he/she	eventually	needs	to	inject	malicious	input	to	hijack	the	control	flow	to	
achieve	code	execution.	Therefore,	we	actually	do	not	need	to	replace	the	whole	function;	if	we	
can	hook	function	entries	or	external	data	readings	to	validate	input	data,	it	is	sufficient	to	
detect	most	of	the	threats.	If	malicious	input	data	are	encountered,	the	validator	returns	an	
error	code,	so	the	afterward	control	flow	will	naturally	fall	into	the	error	handling	path	instead	
of	the	original	vulnerable	path.		
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Figure	8:	Kernel	functions	take	input	from	either	arguments	or	external	data	reading	(e.g.,	copy_from_user)	as	shown	in	(a).	
Most	Android	kernel	exploits	inject	malicious	input	into	the	target	function	and	hijack	the	control	flow	to	achieve	arbitrary	code	
execution,	as	shown	in	(b).	So,	by	hooking	the	data	input	entries	and	validating	the	input	as	shown	in	(c),	we	can	block	most	of	

the	kernel	exploits.	

To	be	more	specific,	we	have	the	following	restrictions:	
1) The	patch	can	hook	a	target	function’s	entry;	
2) In	combination	with	1),	within	the	target	function,	the	patch	can	hook	the	invoking	point	

or	returning	point	of	functions	that	return	a	status	code	(e.g.,	copy_from_user);	
3) The	patch	can	read	anything	that	can	be	read	(registers,	stacks,	heaps,	code,	etc.,	as	

long	as	it	does	not	trigger	faults),	but	cannot	modify	original	kernel	memory	(no	write,	
and	no	data	can	be	sent	out);	

4) After	judging	whether	the	input	is	malicious	or	not,	the	patch	can	return	specific	error	
codes.	

	
The	first	policy	is	straightforward.	It	forces	the	patch	developer	to	explicitly	claim	the	target	
function,	and	only	checks	the	arguments	passed	into	it.	The	patch	reviewer	can	thus	
immediately	understand	which	function	is	to	be	hooked	and	why.	The	third	and	fourth	policies	
are	also	reasonable,	which	provide	the	capability	to	detect	attacks	but	preventing	
modifications.		
	
But	what	is	the	meaning	of	the	second	restriction?	To	make	it	intuitive,	a	running	example	is	
shown	in	Figure	9.	The	vulnerable	function	fun	calls	data	reading	functions	foo	and	bar.	The	
function	foo	reads	data	into	a	buffer	and	returns	success	or	failure,	while	bar	returns	a	
pointer	to	a	structure.	After	invoking	foo,	fun	only	uses	a	conditional	statement1	to	handle	
the	return	value	of	foo,	so	foo	satisfies	the	rule.	On	the	contrary,	after	invoking	bar,	fun	
invokes	a	function	pointed	by	a	field	in	the	structure	returned	by	bar,	so	bar	fails	to	satisfy	

																																																								
1	Conditional	checks	include	statements	like	if/else,	switch/case,	do/while,	for,	etc.	
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the	restriction.	As	a	result,	we	allow	the	patch	to	hook	the	invoking	point	and	the	returning	
point	of	foo2,	but	forbid	hooking	those	of	bar.	
	

	
Figure	9:	A	running	example	to	illustrate	which	functions	can	be	hooked	and	which	cannot	

We	generate	a	whitelist	of	kernel	functions	whose	return	value	is	a	status	code	based	on	
general	kernel	source	code.	Only	functions	on	this	whitelist	can	be	hooked	within	the	target	
function.	With	this	restriction,	we	eliminate	return	value	based	control	flow	manipulation.	
Another	great	benefit	of	this	restriction	is	that	when	the	validator	detects	a	malicious	input	and	
returns	an	error	code,	the	conditional	check	afterwards	will	naturally	switch	to	the	error	
handling	branch.	This	not	only	avoids	triggering	the	vulnerable	code	branch,	but	also	avoids	
crashing	the	kernel.		
	
We	call	vulnerabilities	that	can	be	fixed	by	simply	hooking	the	vulnerable	function	entry	as	Type	
I	vulnerabilities.	Those	that	need	to	also	hook	invoked	functions	are	classified	as	Type	II	
vulnerabilities.	In	Section	5.3,	we	will	show	the	numbers	of	these	two	different	types	of	
vulnerabilities.	
	
5.2	Implementation	

We	implement	the	memory-safe	dynamic	language	engine	based	on	Lua	following	the	
restriction	rules	described	above,	named	as	LuaKpatch.	Lua	certainly	satisfies	memory	safety	
and	has	many	dynamic	flexibilities.	It	is	tiny,	fast,	simple,	easy	to	extend,	with	great	error	
handling,	and	has	the	best	integration	with	C.	In	order	to	integrate	it	into	the	Android	kernel,	
we	followed	many	practices	from	the	lunatik-ng	project	[19]	.	For	example,	numbers	in	the	
original	Lua	implementation	are	in	floating-point	type.	But	Linux	kernel	does	not	support	
floating-point	arithmetic,	and	patches	barely	rely	on	it.	So	numbers	should	be	defined	as	
integers.	Moreover,	unnecessary	Lua	libraries	like	file	operations	are	stripped	away	to	reduce	
the	code	base	size.	
	

																																																								
2	Note	that	the	patch	hooks	fun’s	calling	instruction	and	the	returning	site,	not	foo’s	entry	
instruction	and	returning	instruction.	This	avoids	all	the	invocations	to	foo	get	hooked,	which	
is	expensive.	
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The	Line-of-Code	(LoC)	of	LuaKpatch	is	roughly	11K.	Among	them,	10K	are	Lua	engine’s	code,	
and	the	core	patching	logic	only	takes	less	than	600	LoC.	LuaKpatch	is	compiled	as	an	800KB	
kernel	module.	It	can	be	pre-shipped	in	the	kernel	if	the	phone	vendor	cooperates.	Otherwise,	
it	can	be	shipped	as	a	standalone	kernel	module	and	can	be	loaded	using	the	adaptive	method	
introduced	in	AdaptKpatch.	Once	loaded	into	the	kernel,	it	launches	a	Lua	VM	instance	and	
uses	a	kernel	work	queue	to	process	patch	requests.	We	implement	the	following	interface	
families	for	Lua	to	operate	on:		

1) Symbol	searching:	take	a	symbol	string	and	return	the	address.	
2) Hooking:	take	an	address	and	hook	on	it.	The	hooking	is	achieved	by	inserting	a	

trampoline.	Once	triggered,	the	trampoline	saves	the	current	context	(registers,	stack,	
etc.)	and	invokes	the	designated	Lua	patching	handler.	

3) Typed	reading:	take	an	address,	validate	if	the	address	is	readable,	then	return	the	
typed	value	to	Lua.	

4) Thread	info	fetching:	return	the	current	thread	information,	such	as	thread	id,	etc.	
	

	
Figure	10:	Sample	Lua	patch	to	fix	one	of	the	vulnerable	conditions	of	CVE-2014-3153,	known	as	“Towelroot”	

Based	on	these	APIs,	the	patch	can	be	as	simple	as	shown	in	Figure	10.	On	Line	14,	the	
vulnerable	function	futex_requeue	is	targeted,	and	gets	hooked	on	Line	15.	The	hooking	
process	inserts	a	trampoline	at	the	entrance	of	this	function,	which	saves	the	context	(registers	
and	stack	content)	and	invokes	the	kpatcher	handler.	The	handler	recognizes	the	
corresponding	check	via	the	designated	patch	ID,	and	performs	the	necessary	checks	based	on	
the	saved	context.	If	vulnerable	conditions	are	detected,	the	patch	handler	returns	an	error	
code;	otherwise	it	returns	zero.	When	the	Lua	patch	handler	returns,	the	execution	turns	back	
to	the	trampoline.	In	case	of	error,	the	trampoline	returns	the	error	code	to	the	caller	of	
futex_requeue;	otherwise	it	resumes	normal	execution	into	futex_requeue.	
	
Similar	to	AdaptKpatch,	LuaKpatch	only	performs	hot	patching,	so	it	does	not	conflict	with	the	
static	integrity	protection	mechanisms	like	Secure	Boot.	On	rebooting,	the	framework	should	
be	launched	in	the	very	early	stage	to	reload	the	patches.	Also,	it	needs	to	fall	back	to	normal	
booting	if	hot	patches	cause	problems.	
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5.3	Efficacy	Evaluation	

We	collect	recent	well-known	Android	kernel	vulnerabilities	with	public	exploits	or	crashing	PoC	
in	Table	2.	It	turns	out	that	all	the	vulnerable	conditions	of	them	can	be	captured	by	LuaKpatch.	
The	percentages	of	Type	I	and	Type	II	vulnerabilities	are	shown	in	Figure	11.	The	majority	of	the	
vulnerabilities	can	be	fixed	simply	by	hooking	and	performing	input	validation	at	the	function	
entry.	

CVE-2012-4220	 CVE-2013-6123	 CVE-2015-3636	
CVE-2012-4221	 CVE-2013-6282	 CVE-2015-6619	
CVE-2012-4222	 CVE-2014-3153	 CVE-2015-6640	
CVE-2013-1763	 CVE-2014-4321	 CVE-2016-0728	
CVE-2013-2094	 CVE-2014-4322	 CVE-2016-0774	
CVE-2013-2596	 CVE-2015-0569	 CVE-2016-0802	
CVE-2013-2597	 CVE-2015-1805	 CVE-2016-2468	

Table	2:	Android	root	vulnerabilities	that	have	been	verified	to	be	protectable	by	LuaKpatch.	Most	of	the	vulnerabilities	are	Type	
I	vulnerabilities	(those	that	can	be	patched	by	simply	hooking	the	entry	of	the	vulnerable	functions),	but	the	highlighted/colored	

ones	are	Type	II	vulnerabilities	(those	that	also	need	to	hook	the	invocations	that	return	status	code).	

	
Figure	11:	All	21	vulnerabilities	that	we	collected	can	be	patched	by	LuaKpatch.	Among	them,	16	are	Type	I	vulnerabilities,	and	5	

are	Type	II	vulnerabilities.	So	76%	of	the	vulnerabilities	can	be	fixed	by	hooking	and	checking	input	at	the	function	entry.	

For	example,	for	CVE-2013-1763,	the	source	code	patch	is	shown	in	Figure	12.	LuaKpatch	can	
patch	it	by	hooking	the	entry	of	the	__sock_diag_rcv_msg	function,	getting	the	nlh	
argument,	obtaining	req	from	nlh,	and	then	checking	whether	the	condition	
req->sdiag_family >= AF_MAX	is	satisfied.	If	this	is	true,	it	is	an	exploit	condition	and	
the	patch	should	return	an	error.	
	

	
Figure	12:	The	source	code	patch	for	CVE-2013-1763	

Type	I
16

Type	II
5
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As	another	example,	the	source	code	patch	for	CVE-2013-6123	is	shown	in	Figure	13.	The	
checking	condition	relies	on	the	content	of	u_isp_event,	which	is	obtained	from	the	user	
space	(shown	in	Figure	14).	So	LuaKpatch	cannot	simply	validate	the	exploit	condition	by	
hooking	the	entry	of	msm_ioctl_server.	Luckily,	copy_from_user	returns	status	code,	
so	LuaKpatch	allows	to	hook	copy_from_user	invocations	within	msm_ioctl_server.	
The	remaining	checks	are	straightforward	so	we	omit	the	elaboration.	
	

	
Figure	13:	The	source	patch	for	CVE-2013-6123	

	
Figure	14:	u_isp_event	is	obtained	from	copy_from_user	

However,	not	all	vulnerabilities	can	be	perfectly	solved.	For	example,	for	CVE-2015-3636	
(known	as	“PingPong	Root”),	the	official	patch	is	to	add	sk_nulls_node_init	into	
ping_unhash.	LuaKpatch	does	not	allow	patches	to	achieve	“hook-anywhere”	and	“arbitrary-
code-execution”	for	security	consideration.	So,	as	an	alternative	the	patches	should	insert	an	
argument	validation	at	the	function	entry	of	ping_unhash,	checking	if	
sk->sk_nulls_node.pprev	equals	to	0x200200	(LIST_POISON2).	If	this	exploit	
condition	is	detected,	the	patch	returns	an	error	without	executing	into	ping_unhash.	Note	
that	this	introduces	side	effects,	because	the	intended	ping_unhash	functionalities	are	
dropped	in	case	of	exploits.	Luckily,	kernel	exploits	usually	target	at	code	paths	that	common	
tasks	do	not	trigger	(e.g.,	ping_unhash	on	Android	is	barely	invoked),	and	this	kind	of	side	
effects	does	not	bring	in	serious	consequences.	We	did	an	experiment	by	applying	this	patch	on	
different	devices	(Nexus	5,	Samsung	S6,	etc.)	and	verified	that	the	PingPong	Root	can	be	
successfully	defended	against.	After	two	weeks’	normal	usage	(Internet	browsing,	playing	
games,	etc.)	without	rebooting,	these	devices	are	still	running	smoothly	without	a	problem.	
After	all,	having	some	none-crashing	side	effects	such	as	memory	leakage	is	way	better	than	
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being	exploited.	Even	in	the	worst	situation,	we	can	fall	back	to	the	normal	AdaptKpatch	
mechanism.		
	

5.4	Performance	Evaluation	

LuaKpatch	inserts	extra	validation	checks	into	vulnerable	kernel	functions,	but	since	the	
exploited	functions	are	usually	not	frequently	invoked	(heavily	executed	code	usually	
undergoes	more	thorough	testing),	the	performance	should	not	be	impacted	too	much.	
	
We	evaluated	the	whole	system	performance	overhead	using	CF-Bench	[20]	on	Nexus	5	with	
Android	4.4.	Four	conditions	were	tested	for	comparison:	

1) before	getting	any	patches	
2) with	the	Towelroot	vulnerability	patched	by	LuaKpatch	
3) with	the	Ping	Pong	Root	vulnerability	patched	by	LuaKpatch	
4) with	both	vulnerabilities	patched	

	
The	average	performance	score	was	obtained	from	20	measurements	in	each	test.	The	result	is	
shown	in	Figure	15	–	there	is	no	observable	overhead	incurred	by	LuaKpatch.	This	is	as	
expected	since	the	patched	functions	are	barely	called	during	Android	normal	execution.	
	

	
Figure	15:	Performance	scores	obtained	from	CF-Bench.	The	scores	have	small	deviations,	which	are	within	CF-Bench’s	normal	

fluctuation	range.	

Nevertheless,	we	are	still	interested	in	the	overhead	of	LuaKpatch	in	the	worst	cases.	More	
specifically,	we	want	to	measure	the	overhead	of	each	LuaKpatch	validation.	To	do	so,	we	
measured	the	execution	time	of	chmod	system	call	before	and	after	patching	it	with	a	series	of	
dummy	patches.		The	system	call	is	explicitly	invoked	for	1000	times	for	each	measurement,	
and	the	average	time	is	calculated	from	20	measurements.	
	
As	shown	in	Figure	16,	when	no	patch	is	applied,	the	system	call	itself	takes	about	100.7	
microseconds.	Then	we	applied	four	testing	patches	to	measure	the	cost	of	LuaKpatch:	
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1) When	applied	with	a	patch	that	simply	returns	zero,	the	overhead	is	0.42	microseconds.	
This	reflects	the	cost	of	the	trampoline	execution	time,	namely	the	context	
saving/restoring	plus	the	kernel-to-LuaKpatch/LuaKpatch-to-kernel	transition	time.		

2) When	applied	with	a	patch	that	contains	an	“if/elseif/else”	condition	statement.	
This	patch	adds	an	overhead	of	0.98	microseconds	to	the	system	call.		

3) When	applied	with	a	patch	which	consists	of	a	memory	read,	it	adds	an	overhead	of	
around	0.82	microseconds	to	the	system	call.		

4) Lastly,	to	simulate	a	complicated	situation,	we	wrote	a	patch	with	a	mixture	of	
assignments,	memory	reads	and	conditional	statements.	The	overhead	is	about	3.74	
microseconds.	That	is	less	than	4%	of	the	normal	chmod	execution	time.	

	

	
Figure	16:	Execution	time	of	chmod	with/without	the	patches	

From	the	above	experiments,	we	can	see	that	a	common	LuaKpatch	validation	check	adds	an	
overhead	under	5	microseconds.	Because	system	calls	are	not	invoked	all	the	time,	the	impact	
to	the	overall	system	performance	should	be	even	less.	We	counted	all	system	call	invocations	
on	the	Nexus	5	with	Android	4.4	for	1	minute	when	a	user	normally	browses	Internet	using	
Chrome.	Among	all	the	triggered	system	calls,	gettimeofday	was	the	mostly-called	one,	
which	got	triggered	for	about	110,000	times.	The	overall	performance	overhead	can	be	
estimated	as	5µs*110,000/1min	»	0.9%,	which	is	quite	small.		
	
To	summarize,	LuaKpatch	only	introduces	negligible	performance	overhead.	As	an	ongoing	
work,	we	are	migrating	LuaKpatch	to	LuaJIT	[22]	,	which	should	further	improve	the	
performance.		
	

6.	Conclusion	

In	this	work,	we	discussed	why	Android	kernel	vulnerabilities	can	last	so	long.	To	tackle	this	
problem,	we	introduced	LuaKpatch	and	AdaptKpatch.	Both	frameworks	can	save	developers	
from	tedious	patch	porting	work.	Also,	because	they	are	open	platforms,	patches	can	be	
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provided	from	various	vendors.	As	a	result,	Android	kernel	patching	circle	can	be	greatly	
shortened.		
	
As	shown	in	Figure	17,	with	LuaKpatch,	critical	vulnerabilities	can	be	patched	in	a	few	days.	
Before	the	cold	patches	are	rolled	out,	or	in	case	some	vulnerabilities	cannot	be	perfectly	
solved	by	LuaKpatch,	AdaptKpatch	can	be	utilized	to	fix	the	issues.		
	
LuaKpatch	is	definitely	safer	than	AdaptKpatch	due	to	more	restricted	constraints.	Strange	as	it	
may	sound,	both	LuaKpatch	and	AdaptKpatch	are	much	safer	than	the	traditional	cold	patching.	
This	is	because	cold	patches	are	permanent	modifications.	If	there	is	something	wrong	with	the	
patches,	millions	of	devices	will	be	bricked.	LuaKpatch	and	AdaptKpatch,	however,	only	load	
patches	lively	on	each	reboot,	and	can	easily	fall	back	to	normal	booting	if	issues	are	
encountered.		

	
Figure	17:	The	patching	circle	in	the	open	collaborative	patching	ecosystem.	From	left	to	right,	it	takes	more	time	for	patches	to	
land	on	user	devices	to	take	effect.	And	from	left	to	right,	the	safety	level	also	decreases.	Note	that	AdaptKpatch	can	perfectly	

fix	more	issues	than	LuaKpatch,	so	when	LuaKpatch	is	not	an	ideal	choice,	AdaptKpatch	can	be	a	great	alternative.	

	
Based	on	LuaKpatch	and	AdaptKpatch,	we	call	for	the	Android	ecosystem	to	establish	a	
patching	alliance.	This	alliance	consists	of	device	vendors,	security	vendors,	and	other	parties	in	
the	Android	open	source	communities.	This	alliance	will	be	of	great	significance,	in	that:	

1) The	number	and	the	complexity	of	kernel	vulnerabilities	keep	increasing,	so	more	joint	
effort	makes	it	easier	to	battle	against	them.	

2) In	the	AdaptKpatch	scheme,	patches	can	be	vetted	and	cross-validated	by	qualified	
alliance	members.	

3) Last	but	most	importantly,	all	vendors	can	join	together	to	develop	a	patching	standard	
instead	of	implementing	different	variants.	If	different	hot	patching	mechanisms	exist,	it	
introduces	another	layer	of	fragmentation.		

	
Every	party	in	the	ecosystem	should	be	well	motivated	–	the	device	vendor	will	have	more	
secure	products	thus	more	users	and	sales	without	overhead	spent	on	security	R&D.	Security	
patch	providers	will	gain	reputation	and	profits	(rewards	and	brand	fame)	on	the	other	hand.	
	
Finally,	this	framework	can	be	easily	extended	and	applied	to	general	Linux	platforms.	We	
believe	that	improving	the	security	of	the	whole	ecosystem	is	not	the	dream	of	our	own.	We	
call	for	more	and	more	parties	to	join	in	this	effort	to	fight	the	evils	together.	
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