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Number of Disclosed Android Kernel Vulnerabilities 
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Problem: Old Exploits Remain Effective 

Number of devices vulnerable to two root exploits as of Nov. 2016 

4 

• Android 5.0 released in November 2014 
• 46.3% of devices run an older version in September 2016 



Challenges 

• Officially patching an Android device is a long process  Third-party 
 

 

 

 

 

 

 

 

• Delayed/non-existing kernel source code  Binary-based 
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Challenges 

• Severely fragmented Android ecosystem  Adaptive 
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http://d.ibtimes.co.uk/en/full/1395443/android-fragmentation-2014.png 



Solution 

Third-party Binary-based Adaptive Kernel Live Patching 
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Key requirements: 

• Adaptiveness 

– It should be adaptive to various device kernels 

• Safety 

– Patches should be easy to audit 

– Their behaviors must be technically confined 

• Timeliness 

– Response time should be short, after disclosed vulnerability or exploit 

• Performance 

– The solution should not incur non-trivial performance overhead 



Feasibility Study: Dataset 

• Studied 1139 Android kernels 
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• Most kernel functions are stable across devices and Android 
releases 

• Most vulnerabilities triggered by malicious inputs 
 

• Many functions return error codes 
– Return a pointer  ERR_PTR 

Feasibility Study: Observations 
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• Most kernel functions are stable across devices and Android 
releases 

• Most vulnerabilities triggered by malicious inputs 
 

• Many functions return error codes 
– Return a pointer  ERR_PTR 

Gracefully return 

Feasibility Study: Observations 
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Filter them 



Overall Approach: Input Validation 
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KARMA 

KARMA: Kernel Adaptive Repair for Many Androids 

 

 Adaptive – Automatically adapt to various device kernels 

 Memory-safe – Protect kernel from malicious (misused) patches 

 Multi-level – Flexible for different vulnerabilities 

 

 

11 



KARMA Design: Safety 

• Patches are written in Lua, confined by Lua VM at runtime 

• A patch can only be placed at designated locations 

• Patched functions must return error codes or void 
– Use existing error handling to recover from attacks 

• A patch can read but not write the kernel memory 
– Confined by KARMA APIs 

– Prevent malicious (misused) patches from changing the kernel 

– Prevent information leakage 
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KARMA Design: Multi-level Patching 

• A patch can only be placed at designated locations 
Level 1: Entry or return point of a (vulnerable) function 

Level 2: Before or after the call site to a callee 

e.g., copy_from_user 

Level 3: Binary-based patch 

• 76 critical Android kernel vulnerabilities 
Level 1: 49/76 (64.5%) 

Level 2: 22/76 (28.9%) 

Level 3:   5/76 (6.6%) 
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KARMA Patch Example 

Part of the official patch of CVE-2014-3153 (Towelroot) 
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KARMA Patch Example 
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-EINVAL 

More complex examples in the paper 



KARMA API 
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KARMA API 

Available to patches 
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KARMA Architecture 
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Offline Patch Generation and Verification 

Online Live Patching by KARMA Client 



Offline Patch Adaptation 

Patch A 
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Offline Patch Adaptation 

Three steps: 

1. Identify the vulnerable functions in the target kernel 
– Same function but different names 

– Inlined 

2. Check if the reference patch works for the target kernel 
– Same function but different semantics 

3. Adapt the reference patch for the target kernel 
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Vulnerable Function Identification Example 
CVE-2015-3636  (PingPong Root) 

Device A: ping_unhash                            Device B: ping_v4_unhash 

Func_A Func_B Func_C 

Func_D Func_E 

ping_unhash 

Func_A Func_B Func_C 

Func_D Func_E 

ping_v4_unhash 
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Call graph based similarity comparison 



Semantic Matching 

• Check if two functions are semantically equivalent 

• If so, adapt the reference patch to the target kernel 

• Syntactic matching is too strict 
– Different compilers can generate different code with same semantics 

• Instruction order, register allocation, instruction selection, code layout 
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Semantic Matching 

Same semantics with different syntax 22 
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Semantic Matching 

• Check if two functions are semantically equivalent 

• If so, adapt the reference patch to the target kernel 

• Syntactic matching is too strict 
– Different compilers can generate different code with same semantics 

• Instruction order, register allocation, instruction selection, code layout 

• Use symbolic execution to abstract these differences and 
adapt patches 
– Use approximation to improve scalability (details in the paper) 
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Online Patch Application 
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Function entry point hooking 



Prototype Implementation 

• Lua engine in kernel (11K SLOC) 
– Simple 

– Memory-safe 

– Easy to embed and extend 

– 24 years of development 

• Semantic matching   
–  angr 
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Evaluation: Applicability  

• Evaluated 76 critical vulnerabilities in the last three years 

• Patch level: 
– Level-1: 49 

– Level-2: 22 

– Level-3: 5 
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Evaluation: Adaptability 
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Evaluation: Adaptability 

Types and frequencies of instruction opcodes 
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Evaluation: Adaptability 

Number of function calls and conditional branches  (to abstract CFG) 
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Evaluation: Adaptability 

KARMA’s semantic matching 
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Evaluation: Performance 

CF-Bench results with different patches 
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Evaluation: Performance 

Execution time of  chmod  with different patches 
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Future Work 

• User-space vulnerability protection 
– Project Treble  only partially solve the problem 

• Lua engine in the kernel (11K SLOC) 
– Alternative execution engines, like BPF or sandboxed binary patches 

• Error handling code could be vulnerable 
– Error injection to detect vulnerable error-handling code 

• Improve semantic matching 
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Adaptive Android Kernel Live Patching 

www.YueChen.me 

Q & A 

http://www.yuechen.me/


Backup Slides 



Attack TrustZone from Kernel 

• Example: 
– Downgrade Attack on TrustZone (see its references) 
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http://ww2.cs.fsu.edu/~ychen/paper/downgradeTZ.pdf
http://ww2.cs.fsu.edu/~ychen/paper/downgradeTZ.pdf


Observations 

• Most kernel functions are stable across devices and Android releases. 

Number of syntax clusters for each function 
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About 40% of the shared functions have only one cluster, 
and about 80% of them have 4 clusters or less. 

Cluster 
Number 

Kernel Function Number 



Observations 

• Most kernel functions are stable across devices and Android releases. 
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For about 60% of shared functions, the largest cluster contains 
more than 80% of all the kernels that have this function. 

Kernel Function Number 

Percentage of kernels in the largest cluster for each function 



Symbolic Execution 

• Challenges 
– Avoid path explosion 

– Impact to the environment 

• Practical Solution 
– Non-local memory writes 

– Function calls (and their arguments) 

– Function return values 

• Adaptation (e.g., mutate constants or offsets) 
– foo(symbol_A + 4, 36)                 foo(symbol_A + 8, 36) 
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Evaluation: Overall Performance 

• Complex patch for most frequent syscall (gettimeofday) during 
web browsing 

• Overall system performance overhead in this extreme 
situation: 0.9% 
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Example: CVE-2013-6123 
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Example: CVE-2013-6123 
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Example: CVE-2013-6123 
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Example: CVE-2013-6123 
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Example: CVE-2013-6123 
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Example: CVE-2013-6123 
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You May Also Like 

• A time machine to locate vulnerabilities: 
– Pinpointing Vulnerabilities 

• Protect your computer by encrypting memory all the time: 
– Secure In-Cache Execution 

• Fine-grained dynamic ASLR during runtime: 
– Remix: On-demand Live Randomization 

55 

http://ww2.cs.fsu.edu/~ychen/paper/ravel_slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/Remix_slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/Remix_slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/Remix_slides.pdf

