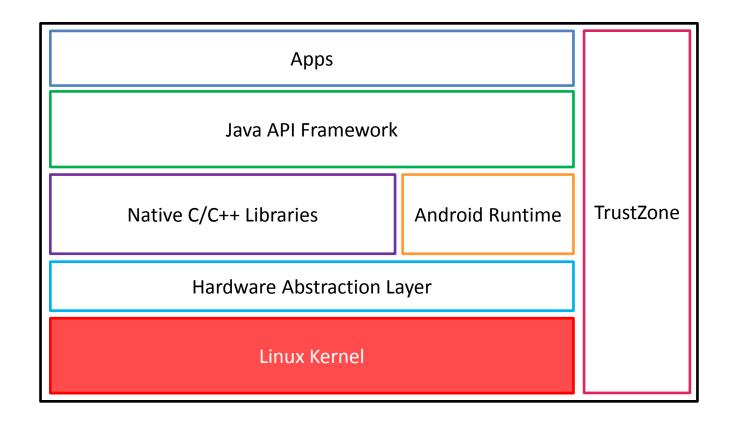
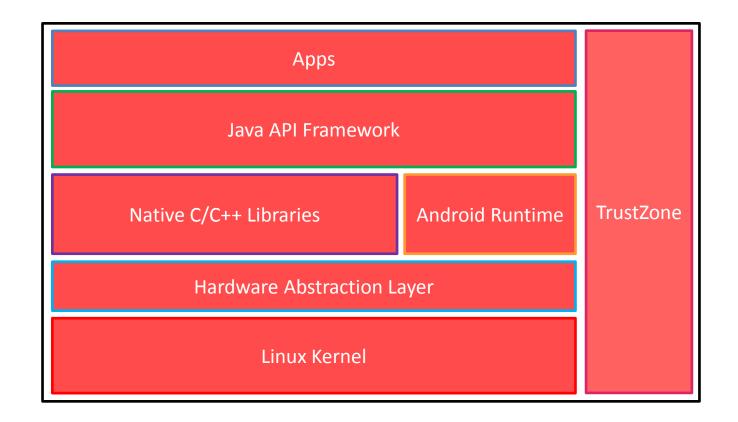
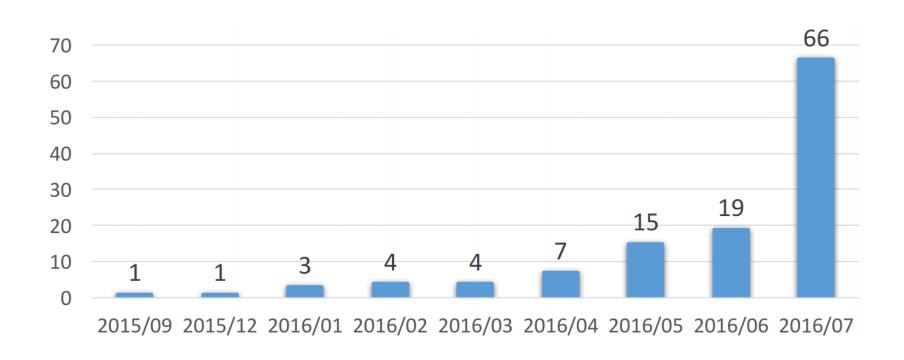

Adaptive Android Kernel Live Patching

Yue Chen¹, Yulong Zhang², Zhi Wang¹, Liangzhao Xia², Chenfu Bao², Tao Wei²


Florida State University¹

Baidu X-Lab²


Android Kernel Vulnerabilities


Android Kernel Vulnerabilities

Android Kernel Vulnerabilities

Number of Disclosed Android Kernel Vulnerabilities

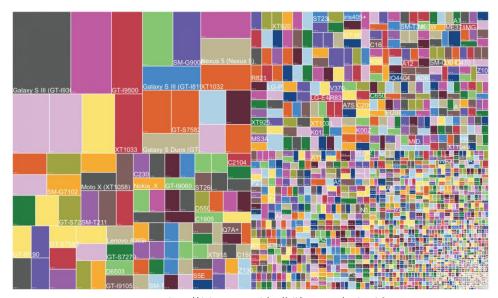
Problem: Old Exploits Remain Effective

CVE ID	Release Date	Months	% Vulnerable Devices
CVE-2015-3636	Sep. 2015	14	30%
CVE-2015-1805	Mar. 2016	8	47%

Number of devices vulnerable to two root exploits as of Nov. 2016

- Android 5.0 released in November 2014
- 46.3% of devices run an older version in September 2016

Challenges


Officially patching an Android device is a long process → Third-party

Delayed/non-existing kernel source code → Binary-based

Challenges

• Severely fragmented Android ecosystem → Adaptive

http://d.ibtimes.co.uk/en/full/1395443/android-fragmentation-2014.png

Solution

Third-party Binary-based Adaptive Kernel Live Patching

Key requirements:

Adaptiveness

It should be adaptive to various device kernels

Safety

- Patches should be easy to audit
- Their behaviors must be technically confined

Timeliness

Response time should be short, after disclosed vulnerability or exploit

Performance

The solution should not incur non-trivial performance overhead

Feasibility Study: Dataset

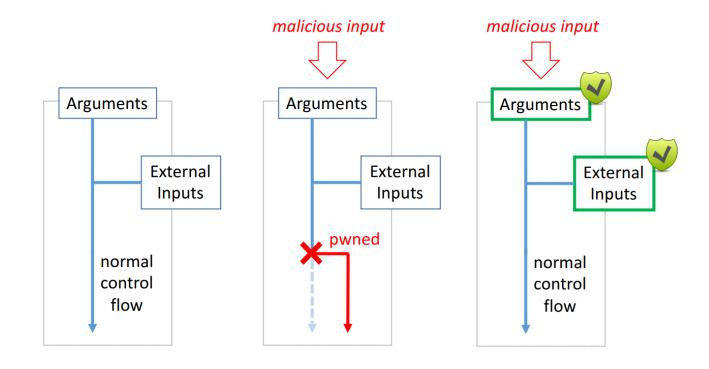
• Studied 1139 Android kernels

Vendor	#Models	#Images
Samsung	192	419
Huawei	132	217
LG	120	239
Oppo	74	249
Google Nexus	2	15
Total	520	1139

Category	Statistics
Countries	67
Carriers	37
Android Versions	4.2.x, 4.3.x, 4.4.x, 5.0.x, 5.1.x, 6.0.x, 7.0.x
Kernel Versions	2.6.x, 3.0.x, 3.4.x, 3.10.x, 3.18.x
Kernel Architectures	ARM (77%), AArch64 (23%)
Kernel Build Years	2012, 2013, 2014, 2015, 2016

Feasibility Study: Observations

- Most kernel functions are stable across devices and Android releases
- Most vulnerabilities triggered by malicious inputs
- Many functions return error codes
 - Return a pointer → ERR_PTR


Feasibility Study: Observations

- Most kernel functions are stable across devices and Android releases
- Most vulnerabilities triggered by malicious inputs
- Many functions return error codes
 - Return a pointer → ERR_PTR

Filter them

Gracefully return

Overall Approach: Input Validation

KARMA

KARMA: Kernel Adaptive Repair for Many Androids

- ✓ Adaptive Automatically adapt to various device kernels
- ✓ Memory-safe Protect kernel from malicious (misused) patches
- ✓ **Multi-level** Flexible for different vulnerabilities

KARMA Design: Safety

- Patches are written in Lua, confined by Lua VM at runtime
- A patch can only be placed at designated locations
- Patched functions must return error codes or void
 - Use existing error handling to recover from attacks
- A patch can read but not write the kernel memory
 - Confined by KARMA APIs
 - Prevent malicious (misused) patches from changing the kernel
 - Prevent information leakage

KARMA Design: Multi-level Patching

A patch can only be placed at designated locations

Level 1: Entry or return point of a (vulnerable) function

Level 2: Before or after the call site to a callee

e.g., copy_from_user

Level 3: Binary-based patch

76 critical Android kernel vulnerabilities

Level 1: 49/76 (64.5%)

Level 2: 22/76 (28.9%)

Level 3: 5/76 (6.6%)

KARMA Patch Example

```
if (requeue_pi) {
        * Requeue PI only works on two distinct uaddrs. This
         * check is only valid for private futexes. See below.
       if (uaddr1 == uaddr2)
               return -EINVAL;
         * requeue_pi requires a pi_state, try to allocate it now
         * without any locks in case it fails.
         */
```

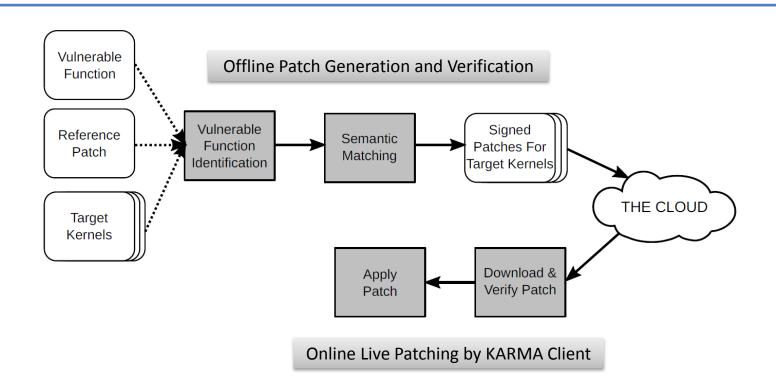
Part of the official patch of CVE-2014-3153 (Towelroot)

KARMA Patch Example

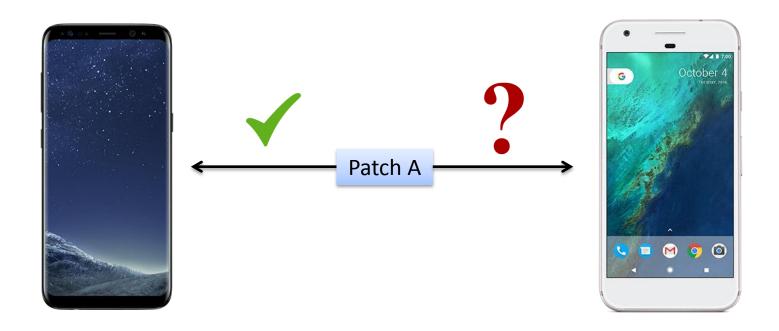
```
1 function kpatcher(patchID, sp, cpsr, r0, r1,
       r2, r3, r4, r5, r6, r7, r8, r9, r10, r11,
        r12, r14)
       if patchID == 0xca5269db50f4 then
           uaddr1 = r0
           uaddr2 = r2
           if uaddr1 == uaddr2 then
               return -22 <
           else
               return 0
                                                -EINVAL
           end
       end
11 end
12 kpatch.hook(0xca5269db50f4,"futex_requeue")
```

More *complex* examples in the paper

KARMA API


API	Functionality
hook	Hook a function for live patching
subhook	Hook the calls to sub-functions for live patching
alloc_mem	Allocate memory for live patching
free_mem	Free the allocated memory for live patching
get_callee	Locate a callee that can be hooked
search_symbol	Get the kernel symbol address
current_thread	Get the current thread context
read_buf	Read raw bytes from memory with the given size
read_int_8	Read 8 bits from memory as an integer
read_int_16	Read 16 bits from memory as an integer
read_int_32	Read 32 bits from memory as an integer
read_int_64	Read 64 bits from memory as an integer

KARMA API

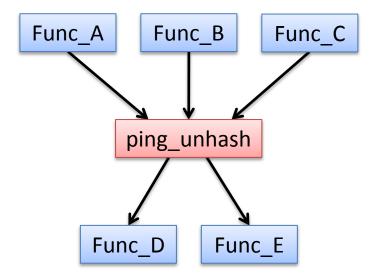

API	Functionality
hook	Hook a function for live patching
subhook	Hook the calls to sub-functions for live patching
alloc_mem	Allocate memory for live patching
free_mem	Free the allocated memory for live patching
_get_callee	Locate a callee that can be hooked
search_symbol	Get the kernel symbol address
current_thread	Get the current thread context
read_buf	Read raw bytes from memory with the given size
read_int_8	Read 8 bits from memory as an integer
read_int_16	Read 16 bits from memory as an integer
read_int_32	Read 32 bits from memory as an integer
read_int_64	Read 64 bits from memory as an integer

Available to patches

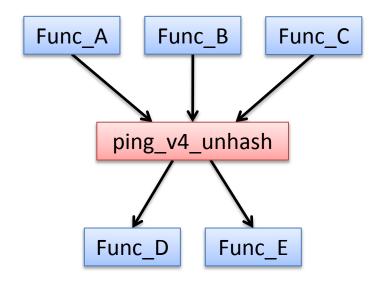
KARMA Architecture

Offline Patch Adaptation

Offline Patch Adaptation

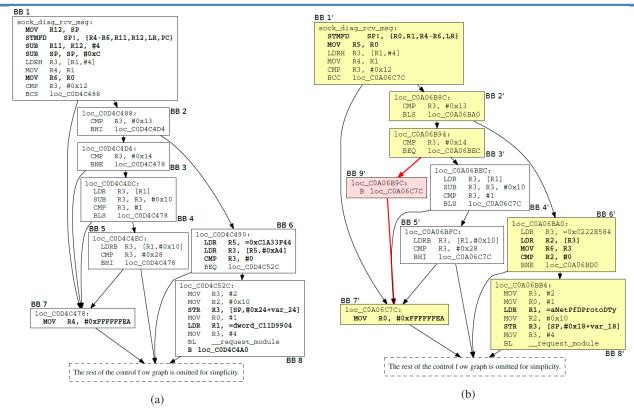

Three steps:

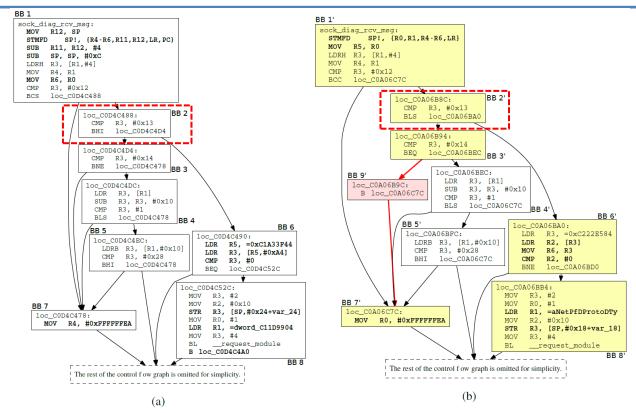
- 1. Identify the vulnerable functions in the target kernel
 - Same function but different names
 - Inlined
- 2. Check if the reference patch works for the target kernel
 - Same function but different semantics
- 3. Adapt the reference patch for the target kernel

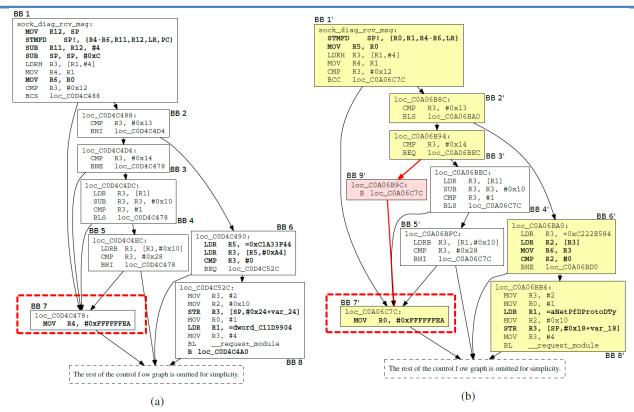

Vulnerable Function Identification Example

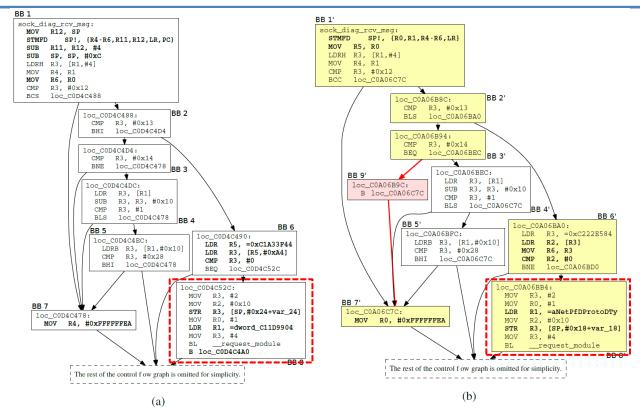
CVE-2015-3636 (PingPong Root)

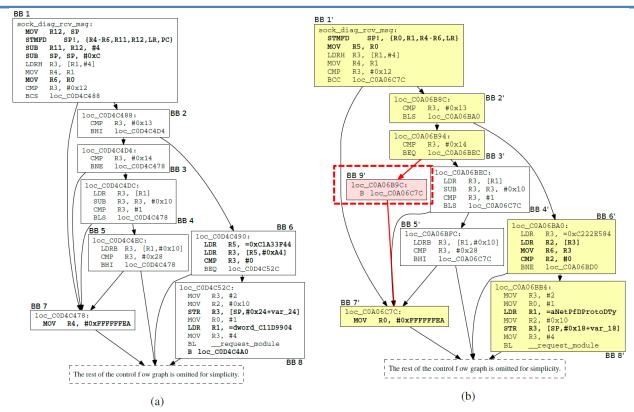
Device A: ping_unhash

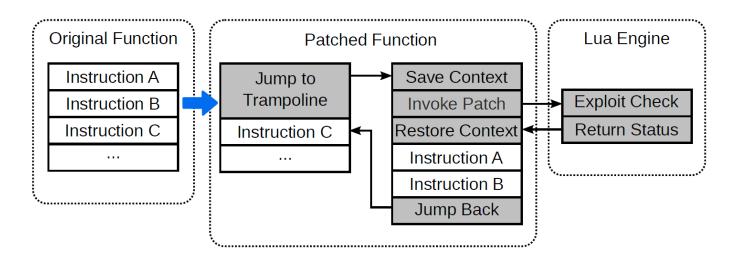



Device B: ping_v4_unhash




Call graph based similarity comparison


- Check if two functions are semantically equivalent
- If so, adapt the reference patch to the target kernel
- Syntactic matching is too strict
 - Different compilers can generate different code with same semantics
 - Instruction order, register allocation, instruction selection, code layout



- Check if two functions are semantically equivalent
- If so, adapt the reference patch to the target kernel
- Syntactic matching is too strict
 - Different compilers can generate different code with same semantics
 - Instruction order, register allocation, instruction selection, code layout
- Use symbolic execution to abstract these differences and adapt patches
 - Use approximation to improve scalability (details in the paper)

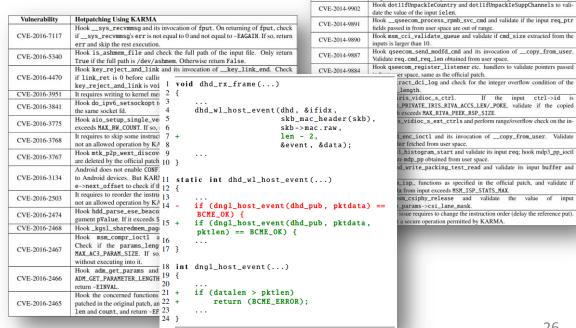
Online Patch Application

Function entry point hooking

Prototype Implementation

- Lua engine in kernel (11*K* SLOC)
 - Simple
 - Memory-safe
 - Easy to embed and extend
 - 24 years of development
- Semantic matching
 - angr

Evaluation: Applicability


Evaluated 76 critical vulnerabilities in the last three years

Patch level:

Level-1: 49

Level-2: 22

Level-3: 5

CVE-2015-0570

Hook __iw_softap_setwpsie and check if ioctl arguments have improper

length, same as the official patch. The check list is long so omitted here.

Evaluation: Adaptability

						Clust	er	Juster	alu	ster	Cos
			code Ch	isters Large	Sest Opcode of Syntathe 73.5%	uster Large	er St Syntax (1 Semantic 75 5%	Juster Clusters gest Seman Seman	ntic Cu se Mate	ning Tin struction # of Ba	ne C ns cic B
Kernel Function	CVE ID	# of	Ope of the	# 0	f Synthic	# 0	i Selle Lar	Seman	"# of In	# of Ba	1510
sock_diag_rcv_msg	2013-1763	35	25.0%	7	73.5%	3	75.5%	10.5s	72	16	
perf_swevent_init	2013-2094	9	55.9%	5	55.9%	2	96.3%	24.6s	81	22	
fb_mmap	2013-2596	26	20.2%	7	44.4%	5	66.9%	12.2s	102	15	
get_user_1	2013-6282	3	92.4%	2	92.4%	2	98.0%	3.2s	6	2	
futex_requeue	2014-3153	54	14.8%	9	71.0%	3	99.3%	35.8s	459	107	
msm_isp_proc_cmd	2014-4321	42	22.0%	5	66.5%	3	42.8%	8.8s	385	68	
send_write_packing_test_read	2014-9878	12	57.6%	4	61.2%	1	100%	4.9s	25	4	
msm_cci_validate_queue	2014-9890	6	59.5%	4	84.9%	2	72.4%	6.7s	77	8	
ping_unhash	2015-3636	36	12.5%	5	75.7%	3	50.5%	4.6s	54	8	
q6lsm_snd_model_buf_alloc	2015-8940	29	34.0%	9	36.6%	5	44.2%	9.9s	104	20	
sys_perf_event_open	2016-0819	22	36.3%	6	46.9%	6	84.2%	34.6s	569	118	
kgsl_ioctl_gpumem_alloc	2016-3842	16	35.4%	3	88.8%	4	46.0%	4.7s	79	11	
is_ashmem_file	2016-5340	6	89.6%	2	93.9%	2	98.1%	0.8s	23	3	

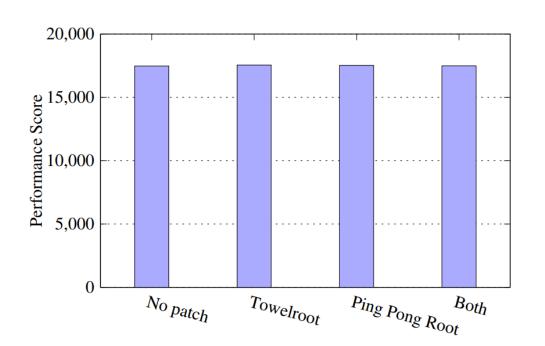
Evaluation: Adaptability

					10	Clust	er	Cluster	CW	ister	.a Cost
Kernel Function	CVE ID	# of	Opcode Che	isters Large	Set Opcode of Syntake of Table 1	uster Large	er Set Syntax (1 Semanic 75.5%	Clusters gest Sema Seman	intic Creatic tic Mate	hing Tir istruction	ne ^{Cost} ns _{asic} Blocks
sock_diag_rcv_msg	2013-1763	35	25.0%	7	73.5%	3	75.5%	10.5s	72	16	
perf_swevent_init	2013-1703	9	55.9%	5	55.9%	2	96.3%	24.6s	81	22	
fb_mmap	2013-2596	26	20.2%	7	44.4%	5	66.9%	12.2s	102	15	
get_user_1	2013-6282	3	92.4%	2	92.4%	2	98.0%	3.2s	6	2	
futex_requeue	2014-3153	54	14.8%	9	71.0%	3	99.3%	35.8s	459	107	-
msm_isp_proc_cmd	2014-4321	42	22.0%	5	66.5%	3	42.8%	8.8s	385	68	
send_write_packing_test_read	2014-9878	12	57.6%	4	61.2%	1	100%	4.9s	25	4	
msm_cci_validate_queue	2014-9890	6	59.5%	4	84.9%	2	72.4%	6.7s	77	8	•
ping_unhash	2015-3636	36	12.5%	5	75.7%	3	50.5%	4.6s	54	8	•
q6lsm_snd_model_buf_alloc	2015-8940	29	34.0%	9	36.6%	5	44.2%	9.9s	104	20	
sys_perf_event_open	2016-0819	22	36.3%	6	46.9%	6	84.2%	34.6s	569	118	
kgsl_ioctl_gpumem_alloc	2016-3842	16	35.4%	3	88.8%	4	46.0%	4.7s	79	11	-
is_ashmem_file	2016-5340	6	89.6%	2	93.9%	2	98.1%	0.8s	23	3	•

Types and frequencies of instruction opcodes

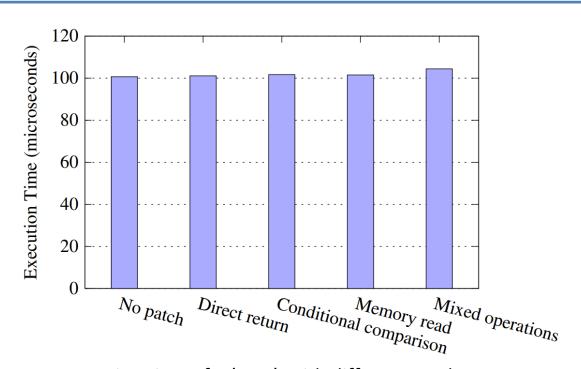
Evaluation: Adaptability

				. Chu		Clust	Juster sters Syntax Cluster argest Syntax Clusters argest Semantic Clusters # of Semantic Seman		custer		. Cost
Kernel Function	CVE ID	# of	Opcode Ch	isters Largs	Sest Opcode of Syntax Cl	uster Large	st Syntax' f Semantic f % of Lar	Seman Cinsters Cinsters	ntic Cr ic Mate # of Ir	hing Tim istruction # of Be	e S IS Sic Blocks
sock_diag_rcv_msg	2013-1763	35	25.0%	7	73.5%	3	75.5%	10.5s	72	16	
perf_swevent_init	2013-2094	9	55.9%	5	55.9%	2	96.3%	24.6s	81	22	
fb_mmap	2013-2596	26	20.2%	7	44.4%	5	66.9%	12.2s	102	15	
get_user_1	2013-6282	3	92.4%	2	92.4%	2	98.0%	3.2s	6	2	
futex_requeue	2014-3153	54	14.8%	9	71.0%	3	99.3%	35.8s	459	107	
msm_isp_proc_cmd	2014-4321	42	22.0%	5	66.5%	3	42.8%	8.8s	385	68	
send_write_packing_test_read	2014-9878	12	57.6%	4	61.2%	1	100%	4.9s	25	4	
msm_cci_validate_queue	2014-9890	6	59.5%	4	84.9%	2	72.4%	6.7s	77	8	
ping_unhash	2015-3636	36	12.5%	5	75.7%	3	50.5%	4.6s	54	8	
q6lsm_snd_model_buf_alloc	2015-8940	29	34.0%	9	36.6%	5	44.2%	9.9s	104	20	
sys_perf_event_open	2016-0819	22	36.3%	6	46.9%	6	84.2%	34.6s	569	118	
kgsl_ioctl_gpumem_alloc	2016-3842	16	35.4%	3	88.8%	4	46.0%	4.7s	79	11	
is_ashmem_file	2016-5340	6	89.6%	2	93.9%	2	98.1%	0.8s	23	3	


Number of function calls and conditional branches (to abstract CFG)

Evaluation: Adaptability

				16		Cluster		Cluster		ster	Cost
Kernel Function	CVE ID	# of	Opcode Ch	isters Large # 0	Set Opcode 1 Syntathe	uster Large # 0	er St Syntax (Semantic 75.5%	Semant Semant	ntic Cx tic Mate # of Ir	hing Tir istruction # of B	ne ^{Cost} ns asic Blocks
sock_diag_rcv_msg	2013-1763	35	25.0%	7	73.5%	3	75.5%	10.5s	72	16	•
perf_swevent_init	2013-2094	9	55.9%	5	55.9%	2	96.3%	24.6s	81	22	
fb_mmap	2013-2596	26	20.2%	7	44.4%	5	66.9%	12.2s	102	15	
get_user_1	2013-6282	3	92.4%	2	92.4%	2	98.0%	3.2s	6	2	
futex_requeue	2014-3153	54	14.8%	9	71.0%	3	99.3%	35.8s	459	107	
msm_isp_proc_cmd	2014-4321	42	22.0%	5	66.5%	3	42.8%	8.8s	385	68	
send_write_packing_test_read	2014-9878	12	57.6%	4	61.2%	1	100%	4.9s	25	4	
msm_cci_validate_queue	2014-9890	6	59.5%	4	84.9%	2	72.4%	6.7s	77	8	
ping_unhash	2015-3636	36	12.5%	5	75.7%	3	50.5%	4.6s	54	8	
q6lsm_snd_model_buf_alloc	2015-8940	29	34.0%	9	36.6%	5	44.2%	9.9s	104	20	
sys_perf_event_open	2016-0819	22	36.3%	6	46.9%	6	84.2%	34.6s	569	118	
kgsl_ioctl_gpumem_alloc	2016-3842	16	35.4%	3	88.8%	4	46.0%	4.7s	79	11	-
is_ashmem_file	2016-5340	6	89.6%	2	93.9%	2	98.1%	0.8s	23	3	


KARMA's semantic matching

Evaluation: Performance

CF-Bench results with different patches

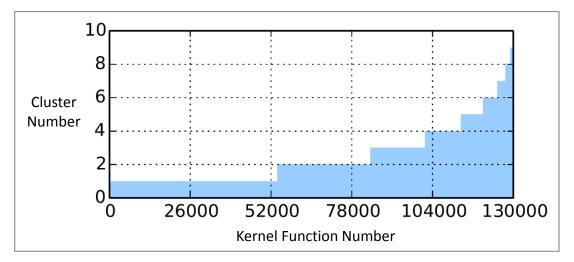
Evaluation: Performance

Execution time of chmod with different patches

Future Work

- User-space vulnerability protection
 - Project Treble → only partially solve the problem
- Lua engine in the kernel (11K SLOC)
 - Alternative execution engines, like BPF or sandboxed binary patches
- Error handling code could be vulnerable
 - Error injection to detect vulnerable error-handling code
- Improve semantic matching

Backup Slides

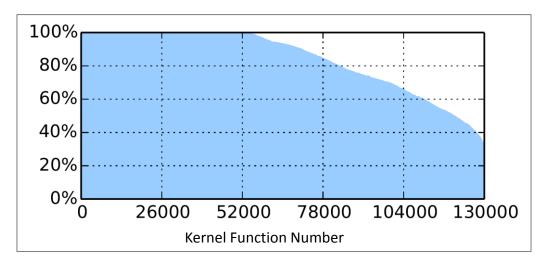

Attack TrustZone from Kernel

Example:

<u>Downgrade Attack on TrustZone</u> (see its references)

Observations

Most kernel functions are stable across devices and Android releases.



Number of syntax clusters for each function

About 40% of the shared functions have only one cluster, and about 80% of them have 4 clusters or less.

Observations

Most kernel functions are stable across devices and Android releases.

Percentage of kernels in the largest cluster for each function

For about 60% of shared functions, the largest cluster contains more than 80% of all the kernels that have this function.

Symbolic Execution

- Challenges
 - Avoid path explosion
 - Impact to the environment
- Practical Solution
 - Non-local memory writes
 - Function calls (and their arguments)
 - Function return values
- Adaptation (e.g., mutate constants or offsets)
 - foo(symbol_A + 4, 36) \longrightarrow foo(symbol_A + 8, 36)

Evaluation: Overall Performance

- Complex patch for most frequent syscall (gettimeofday) during web browsing
- Overall system performance overhead in this extreme situation: 0.9%

```
1 static long msm_ioctl_server(struct file *
       file, void *fh, bool valid_prio, int cmd,
        void *arg)
2 {
3
       if (copy_from_user(&u_isp_event,
           (void __user *)ioctl_ptr->ioctl_ptr,
6
           sizeof(struct msm_isp_event_ctrl))) {
           . . .
8
9
10 +
       if(u_isp_event.isp_data.ctrl.queue_idx<0</pre>
11 +
       || u_isp_event.isp_data.ctrl.queue_idx >=
12 +
           MAX_NUM_ACTIVE_CAMERA) {
13 +
           pr_err("%s: Invalid index %d\n",
14 +
               __func__, u_isp_event.isp_data.
       ctrl.queue_idx);
15 +
           rc = -EINVAL;
16 +
           return rc;
17 +
18
19 }
```

```
1 static long msm_ioctl_server(struct file *
       file, void *fh, bool valid_prio, int cmd,
        void *arg)
2 {
3
       if (copy_from_user(&u_isp_event,
           (void __user *)ioctl_ptr->ioctl_ptr,
           sizeof(struct msm_isp_event_ctrl))) {
           . . .
8
9
10 +
       if(u_isp_event.isp_data.ctrl.queue_idx <0</pre>
       || u_isp_event.isp_data.ctrl.queue_idx >=
11 +
12 +
           MAX_NUM_ACTIVE_CAMERA) {
13 +
           pr_err("%s: Invalid index %d\n",
14 +
               __func__, u_isp_event.isp_data.
       ctrl.queue_idx);
15 +
           rc = -EINVAL;
16 +
           return rc;
17 +
18
19 }
```

```
1 static long msm_ioctl_server(struct file *
       file, void *fh, bool valid_prio, int cmd,
        void *arg)
2 {
3
       if (copy_from_user(&u_isp_event,
           (void __user *)ioctl_ptr->ioctl_ptr,
6
           sizeof(struct msm_isp_event_ctrl))) {
           . . .
8
9
10 +
       if(u_isp_event isp_data.ctrl.queue_idx<0</pre>
11 +
       || u_isp_event.isp_data.ctrl.queue_idx >=
12 +
           MAX_NUM_ACTIVE_CAMERA) {
13 +
           pr_err("%s: Invalid index %d\n",
14 +
               __func__, u_isp_event.isp_data.
       ctrl.queue_idx);
15 +
           rc = -EINVAL;
16 +
           return rc;
17 +
18
19 }
```

```
1 static long msm_ioctl_server(struct file *
       file, void *fh, bool valid_prio, int cmd,
        void *arg)
2 {
3
       if (copy_from_user(&u_isp_event,
           (void __user *)ioctl_ptr->ioctl_ptr,
           sizeof(struct msm_isp_event_ctrl))) {
           . . .
8
9
10 +
       if(u_isp_event.isp_data.ctrl.queue_idx<0</pre>
11 +
       || u_isp_event.isp_data.ctrl.queue_idx >=
12 +
           MAX_NUM_ACTIVE_CAMERA) {
13 +
           pr_err("%s: Invalid index %d\n",
14 +
               __func__, u_isp_event.isp_data.
       ctrl.queue_idx);
15 +
           rc = -EINVAL;
16 +
           return rc;
17 +
18
19 }
```

```
1 static long msm_ioctl_server(struct file *
       file, void *fh, bool valid_prio, int cmd,
        void *arg)
2 {
3
          (copy_from_user(&u_isp_event,
           (void __user *)ioctl_ptr->ioctl_ptr,
           sizeof(struct msm_isp_event_ctrl))) {
6
8
9
10 +
       if(u_isp_event.isp_data.ctrl.queue_idx<0</pre>
11 +
       || u_isp_event.isp_data.ctrl.queue_idx >=
12 +
           MAX_NUM_ACTIVE_CAMERA) {
13 +
           pr_err("%s: Invalid index %d\n",
14 +
               __func__, u_isp_event.isp_data.
       ctrl.queue_idx);
15 +
           rc = -EINVAL;
16 +
           return rc;
17 +
18
19 }
```

```
1 static long msm_ioctl_server(struct file *
       file, void *fh, bool valid_prio, int cmd,
        void *arg)
2 {
3
       if (copy_from_user(&u_isp_event,
           (void __user *)ioctl_ptr->ioctl_ptr,
           sizeof(struct msm_isp_event_ctrl))) {
8
9
10 +
       if(u_isp_event.isp_data.ctrl.queue_idx<0</pre>
11 +
      || u_isp_event.isp_data.ctrl.queue_idx >=
12 +
           MAX_NUM_ACTIVE_CAMERA) {
13 +
           pr_err("%s: Invalid index %d\n",
14 +
               __func__, u_isp_event.isp_data.
       ctrl.queue_idx);
15 +
           rc = -EINVAL;
16 +
           return rc;
17 +
18
19 }
```

You May Also Like

- A time machine to locate vulnerabilities:
 - Pinpointing Vulnerabilities
- Protect your computer by encrypting memory all the time:
 - Secure In-Cache Execution
- Fine-grained dynamic ASLR during runtime:
 - Remix: On-demand Live Randomization