
Adaptive Android Kernel Live Patching

Yue Chen1, Yulong Zhang2, Zhi Wang1, Liangzhao Xia2, Chenfu Bao2, Tao Wei2

Florida State University1

Baidu X-Lab2

USENIX Security Symposium 2017

Android Kernel Vulnerabilities

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Android Kernel Vulnerabilities

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Android Kernel Vulnerabilities

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Number of Disclosed Android Kernel Vulnerabilities

3

Problem: Old Exploits Remain Effective

Number of devices vulnerable to two root exploits as of Nov. 2016

4

• Android 5.0 released in November 2014
• 46.3% of devices run an older version in September 2016

Challenges

• Officially patching an Android device is a long process  Third-party

• Delayed/non-existing kernel source code  Binary-based

5

Challenges

• Severely fragmented Android ecosystem  Adaptive

6

http://d.ibtimes.co.uk/en/full/1395443/android-fragmentation-2014.png

Solution

Third-party Binary-based Adaptive Kernel Live Patching

7

Key requirements:

• Adaptiveness

– It should be adaptive to various device kernels

• Safety

– Patches should be easy to audit

– Their behaviors must be technically confined

• Timeliness

– Response time should be short, after disclosed vulnerability or exploit

• Performance

– The solution should not incur non-trivial performance overhead

Feasibility Study: Dataset

• Studied 1139 Android kernels

8

• Most kernel functions are stable across devices and Android
releases

• Most vulnerabilities triggered by malicious inputs

• Many functions return error codes
– Return a pointer  ERR_PTR

Feasibility Study: Observations

9

• Most kernel functions are stable across devices and Android
releases

• Most vulnerabilities triggered by malicious inputs

• Many functions return error codes
– Return a pointer  ERR_PTR

Gracefully return

Feasibility Study: Observations

9

Filter them

Overall Approach: Input Validation

10

KARMA

KARMA: Kernel Adaptive Repair for Many Androids

 Adaptive – Automatically adapt to various device kernels

 Memory-safe – Protect kernel from malicious (misused) patches

 Multi-level – Flexible for different vulnerabilities

11

KARMA Design: Safety

• Patches are written in Lua, confined by Lua VM at runtime

• A patch can only be placed at designated locations

• Patched functions must return error codes or void
– Use existing error handling to recover from attacks

• A patch can read but not write the kernel memory
– Confined by KARMA APIs

– Prevent malicious (misused) patches from changing the kernel

– Prevent information leakage

12

KARMA Design: Multi-level Patching

• A patch can only be placed at designated locations
Level 1: Entry or return point of a (vulnerable) function

Level 2: Before or after the call site to a callee

e.g., copy_from_user

Level 3: Binary-based patch

• 76 critical Android kernel vulnerabilities
Level 1: 49/76 (64.5%)

Level 2: 22/76 (28.9%)

Level 3: 5/76 (6.6%)

13

KARMA Patch Example

Part of the official patch of CVE-2014-3153 (Towelroot)

14

KARMA Patch Example

15

-EINVAL

More complex examples in the paper

KARMA API

16

KARMA API

Available to patches

16

KARMA Architecture

17

Offline Patch Generation and Verification

Online Live Patching by KARMA Client

Offline Patch Adaptation

Patch A

18

Offline Patch Adaptation

Three steps:

1. Identify the vulnerable functions in the target kernel
– Same function but different names

– Inlined

2. Check if the reference patch works for the target kernel
– Same function but different semantics

3. Adapt the reference patch for the target kernel

19

Vulnerable Function Identification Example
CVE-2015-3636 (PingPong Root)

Device A: ping_unhash Device B: ping_v4_unhash

Func_A Func_B Func_C

Func_D Func_E

ping_unhash

Func_A Func_B Func_C

Func_D Func_E

ping_v4_unhash

20

Call graph based similarity comparison

Semantic Matching

• Check if two functions are semantically equivalent

• If so, adapt the reference patch to the target kernel

• Syntactic matching is too strict
– Different compilers can generate different code with same semantics

• Instruction order, register allocation, instruction selection, code layout

21

Semantic Matching

Same semantics with different syntax 22

Semantic Matching

Same semantics with different syntax 22

Semantic Matching

Same semantics with different syntax 22

Semantic Matching

Same semantics with different syntax 22

Semantic Matching

Same semantics with different syntax 22

Semantic Matching

• Check if two functions are semantically equivalent

• If so, adapt the reference patch to the target kernel

• Syntactic matching is too strict
– Different compilers can generate different code with same semantics

• Instruction order, register allocation, instruction selection, code layout

• Use symbolic execution to abstract these differences and
adapt patches
– Use approximation to improve scalability (details in the paper)

23

Online Patch Application

24

Function entry point hooking

Prototype Implementation

• Lua engine in kernel (11K SLOC)
– Simple

– Memory-safe

– Easy to embed and extend

– 24 years of development

• Semantic matching
– angr

25

Evaluation: Applicability

• Evaluated 76 critical vulnerabilities in the last three years

• Patch level:
– Level-1: 49

– Level-2: 22

– Level-3: 5

26

Evaluation: Adaptability

27

Evaluation: Adaptability

Types and frequencies of instruction opcodes

27

Evaluation: Adaptability

Number of function calls and conditional branches (to abstract CFG)

27

Evaluation: Adaptability

KARMA’s semantic matching

27

Evaluation: Performance

CF-Bench results with different patches

28

Evaluation: Performance

Execution time of chmod with different patches

29

Future Work

• User-space vulnerability protection
– Project Treble  only partially solve the problem

• Lua engine in the kernel (11K SLOC)
– Alternative execution engines, like BPF or sandboxed binary patches

• Error handling code could be vulnerable
– Error injection to detect vulnerable error-handling code

• Improve semantic matching

30

Adaptive Android Kernel Live Patching

www.YueChen.me

Q & A

http://www.yuechen.me/

Backup Slides

Attack TrustZone from Kernel

• Example:
– Downgrade Attack on TrustZone (see its references)

34

http://ww2.cs.fsu.edu/~ychen/paper/downgradeTZ.pdf
http://ww2.cs.fsu.edu/~ychen/paper/downgradeTZ.pdf

Observations

• Most kernel functions are stable across devices and Android releases.

Number of syntax clusters for each function

35

About 40% of the shared functions have only one cluster,
and about 80% of them have 4 clusters or less.

Cluster
Number

Kernel Function Number

Observations

• Most kernel functions are stable across devices and Android releases.

36

For about 60% of shared functions, the largest cluster contains
more than 80% of all the kernels that have this function.

Kernel Function Number

Percentage of kernels in the largest cluster for each function

Symbolic Execution

• Challenges
– Avoid path explosion

– Impact to the environment

• Practical Solution
– Non-local memory writes

– Function calls (and their arguments)

– Function return values

• Adaptation (e.g., mutate constants or offsets)
– foo(symbol_A + 4, 36) foo(symbol_A + 8, 36)

 37

Evaluation: Overall Performance

• Complex patch for most frequent syscall (gettimeofday) during
web browsing

• Overall system performance overhead in this extreme
situation: 0.9%

39

Example: CVE-2013-6123

49

Example: CVE-2013-6123

50

Example: CVE-2013-6123

51

Example: CVE-2013-6123

52

Example: CVE-2013-6123

53

Example: CVE-2013-6123

54

You May Also Like

• A time machine to locate vulnerabilities:
– Pinpointing Vulnerabilities

• Protect your computer by encrypting memory all the time:
– Secure In-Cache Execution

• Fine-grained dynamic ASLR during runtime:
– Remix: On-demand Live Randomization

55

http://ww2.cs.fsu.edu/~ychen/paper/ravel_slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/EncExec_Slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/Remix_slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/Remix_slides.pdf
http://ww2.cs.fsu.edu/~ychen/paper/Remix_slides.pdf

