
Downgrade Attack on TrustZone
Yue Chen1, Yulong Zhang2, Zhi Wang1, Tao Wei2 Florida State University1, Baidu X-Lab2

Security-critical tasks require proper isolation

from untrusted software. Chip manufacturers

design trusted execution environments (TEEs)

in their processors to secure these tasks. The

integrity and security of the software in the

trusted environment depend on the

verification process of the system.

We find a form of attack that can be

performed on the current implementations of

the widely deployed ARM TrustZone

technology. The attack exploits the fact that

the trustlet (TA) or TrustZone OS loading

verification procedure may lack proper

rollback prevention (or configuration) and

may use the same verification key across

versions. If an exploit works on an out-of-

date version, but the vulnerability is patched

on the latest version, an attacker can still use

the same exploit to compromise the update-

to-date system, by downgrading the software

to an older and exploitable version.

We did experiments on popular devices on

the market including those from Google,

Samsung and Huawei, and found that all of

them have the risk of being attacked. Also,

we show a real-world example to exploit

Qualcomm's QSEE.

In addition, in order to find out which device

images share the same verification key,

pattern matching schemes for different device

vendors are analyzed and summarized.

Background
Hardware manufacturers have introduced a new security

mechanism called trusted execution environment (TEE), such

as ARM TrustZone (TZ) technology, which has a widespread

deployment in the digital world.

Basically, it has two separate worlds: one is called normal

world and another one is secure world. Each world has its

own operating system (OS) and user applications as shown in

Figure 1. In practice, the normal world contains untrusted

software, and the secure world contains trusted software. By

design, the normal world is isolated from the secure world by

hardware-enforced mechanisms. Simply put, the user

applications and normal OS in the normal world are the

traditional ones, while the ones in secure world have

dedicated usages (e.g., digital rights management,

authentication, etc.). We call the OS (privileged) in the secure

world trusted OS, and the user-space applications

(unprivileged) are called trustlets (also called trusted

applications (TAs)). The two worlds communicate through the

secure monitor.

When the trusted OS loads a trustlet from its unprivileged

mode, it firstly checks its signature to see if it is signed by

the right party and if the software is modified. This integrity

check aims at removing the risk of loading tampered trustlets.

By design, starting from the hardware (e.g., eFuse/qFuse or

ROM), a chain of trust is formed. This chain includes the

bootloaders, the trusted OS, and derived certificates or keys.

This step-by-step verification procedure ensures the integrity

of the secure world. Potentially, the security and integrity of

the whole system relies on this kind of verification.

Compatibility Matching
If one needs to write a scanner to see if two image versions

can load their trustlets mutually, or to cluster images into

such groups, here we provide a pattern matching analysis

on the TEE implementations of different vendors. To ensure

the compatibility of the trustlets across versions, they may

need the API compatibility with the TEE OS, and may need

to pass the version check if there is any. Qualcomm does

have the version control parameter SW_ID, but it is not

properly configured, as most of the images have the value of

zero (Trustonic's situation is similar). So the most important

is signature verification. This procedure requires the correct

public key or certificate to verify the trustlet. If it fails, the

trustlet cannot be loaded. Until now in our experiments, we

find that the keys are the determining factor for load

verification. So next we will focus on this factor and describe

our findings on different platforms.

Through reverse engineering and analysis, we try to extract

the patterns about the trustlet/image pair replaceability.

Google Nexus:

If the hexadecimal pattern is

30 82 [XX] [XX] 30 82 ...

We can say that it is a beginning of a certificate with DER

(Distinguished Encoding Rules) encoding. Note that 30 82

are 0x30 and 0x82 in hex, and the two bytes in between can

be random.

Samsung (two TZ vendors):

Qualcomm:

The same as that of Google Nexus, as they both use

Qualcomm’s QSEE.

Trustonic / Mobicore:

00 01 00 00 [256 bytes] 01 00 00 00 03 ...

What needs to be compared is the 256-byte blob between

“00 01 00 00” and “01 00 00 00 03”. A standalone 256-

byte blob cannot form an RSA-2048 public key or a standard

certificate. However, since the RSA public exponent is

usually set as 65537 or 3, which can be easily embedded

elsewhere, we guess this 256-byte (2048-bit) blob is the

modulus of an RSA public key, which is enough for the

comparison purpose.

Huawei:

The desired keys are not statically embedded.

20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017)

Figure 1: Overview of the typical TEE architecture

Attack Description

When a trustlet is being loaded, its cryptographic digital signature

will be validated. Usually this signature is computed using a

private key to encrypt the hash of the trustlet (or certain parts of

the trustlet). Only the correct public key can decrypt it, and then

the trustlet can be verified. For security purposes, the key pairs

are based on the chain of trust, originating from the hardware.

Ideally, if the system is updated, the older software like trustlets

cannot be loaded into the newer system. However, the trustlets

can be replaced with their corresponding older versions. If the

older version has a vulnerability and the newer version is patched,

the attacker can still exploit the patched version by replacing it

with an older one. We call it downgrade attack or rollback attack.

A successful exploit first needs to have the root privilege of the

device (e.g., exploit another vulnerability), and then use this issue

combined with other vulnerabilities to exploit the device, potentially

compromising the TrustZone/TEE (even its kernel).

This vulnerability potentially impacts all the devices that are on the

current market, though we do not have a thorough test and

experiment.

We run a real-world exploit on Nexus 6 and successfully use the

downgrade attack to exploit a QSEE privilege escalation

vulnerability (CVE-2015-6639). This vulnerability could be

exploited in version LMY48M, but not N6F26Y. We replace

N6F26Y’s widevine trustlets with the ones from LMY48M. Then

the exploit works.

The secure boot procedure has a chain of trust. In its boot

sequence, each software image to be executed is authenticated

by software that was previously verified. This design prevents

unauthorized or tampered code from being run. Different devices

could have different boot stages, including different bootloaders.

For example, for Qualcomm’s MSM8960 chipset, SBL1 loads

SBL2, and SBL2 loads tz and SBL3. Here the SBL stands for

secondary bootloader.

Similar to the loading verification of trustlets, the TrustZone OS

also needs loading verification. Hence, it is under the haze of

downgrade attack, too. In our experiments with Google Nexus 5,

the TrustZone OS, even the bootloader, can be downgraded

without failure. We believe that this problem exists on more

components in the chain of trust, potentially affecting the

fundamental security of the whole system.

ABSTRACT

