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Security-critical tasks require proper isolation 

from untrusted software. Chip manufacturers 

design trusted execution environments (TEEs) 

in their processors to secure these tasks. The 

integrity and security of the software in the 

trusted environment depend on the 

verification process of the system. 

 

We find a form of attack that can be 

performed on the current implementations of 

the widely deployed ARM TrustZone 

technology. The attack exploits the fact that 

the trustlet (TA) or TrustZone OS loading 

verification procedure may lack proper 

rollback prevention (or configuration) and 

may use the same verification key across 

versions. If an exploit works on an out-of-

date version, but the vulnerability is patched 

on the latest version, an attacker can still use 

the same exploit to compromise the update-

to-date system, by downgrading the software 

to an older and exploitable version. 

 

We did experiments on popular devices on 

the market including those from Google, 

Samsung and Huawei, and found that all of 

them have the risk of being attacked. Also, 

we show a real-world example to exploit 

Qualcomm's QSEE. 

 

In addition, in order to find out which device 

images share the same verification key, 

pattern matching schemes for different device 

vendors are analyzed and summarized. 

Background 
Hardware manufacturers have introduced a new security 

mechanism called trusted execution environment (TEE), such 

as ARM TrustZone (TZ) technology, which has a widespread 

deployment in the digital world. 

 

Basically, it has two separate worlds: one is called normal 

world and another one is secure world. Each world has its 

own operating system (OS) and user applications as shown in 

Figure 1. In practice, the normal world contains untrusted 

software, and the secure world contains trusted software. By 

design, the normal world is isolated from the secure world by 

hardware-enforced mechanisms. Simply put, the user 

applications and normal OS in the normal world are the 

traditional ones, while the ones in secure world have 

dedicated usages (e.g., digital rights management, 

authentication, etc.). We call the OS (privileged) in the secure 

world trusted OS, and the user-space applications 

(unprivileged) are called trustlets (also called trusted 

applications (TAs)). The two worlds communicate through the 

secure monitor. 

 

When the trusted OS loads a trustlet from its unprivileged 

mode, it firstly checks its signature to see if it is signed by 

the right party and if the software is modified. This integrity 

check aims at removing the risk of loading tampered trustlets. 

 

By design, starting from the hardware (e.g., eFuse/qFuse or 

ROM), a chain of trust is formed. This chain includes the 

bootloaders, the trusted OS, and derived certificates or keys. 

This step-by-step verification procedure ensures the integrity 

of the secure world. Potentially, the security and integrity of 

the whole system relies on this kind of verification. 

Compatibility Matching 
If one needs to write a scanner to see if two image versions 

can load their trustlets mutually, or to cluster images into 

such groups, here we provide a pattern matching analysis 

on the TEE implementations of different vendors. To ensure 

the compatibility of the trustlets across versions, they may 

need the API compatibility with the TEE OS, and may need 

to pass the version check if there is any. Qualcomm does 

have the version control parameter SW_ID, but it is not 

properly configured, as most of the images have the value of 

zero (Trustonic's situation is similar). So the most important 

is signature verification. This procedure requires the correct 

public key or certificate to verify the trustlet. If it fails, the 

trustlet cannot be loaded. Until now in our experiments, we 

find that the keys are the determining factor for load 

verification. So next we will focus on this factor and describe 

our findings on different platforms. 

 

Through reverse engineering and analysis, we try to extract 

the patterns about the trustlet/image pair replaceability. 

 

Google Nexus: 

If the hexadecimal pattern is 

30 82 [XX] [XX] 30 82 ... 

We can say that it is a beginning of a certificate with DER 

(Distinguished Encoding Rules) encoding. Note that 30 82 

are 0x30 and 0x82 in hex, and the two bytes in between can 

be random. 

 

Samsung  (two TZ vendors): 

Qualcomm: 

The same as that of Google Nexus, as they both use 

Qualcomm’s QSEE. 

 

Trustonic / Mobicore: 

00 01 00 00 [256 bytes] 01 00 00 00 03 ... 

What needs to be compared is the 256-byte blob between 

“00 01 00 00” and “01 00 00 00 03”. A standalone 256-

byte blob cannot form an RSA-2048 public key or a standard 

certificate. However, since the RSA public exponent is 

usually set as 65537 or 3, which can be easily embedded 

elsewhere, we guess this 256-byte (2048-bit) blob is the 

modulus of an RSA public key, which is enough for the 

comparison purpose. 

 

Huawei: 

The desired keys are not statically embedded. 
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Figure 1: Overview of the typical TEE architecture 

Attack Description 
 

When a trustlet is being loaded, its cryptographic digital signature 

will be validated. Usually this signature is computed using a 

private key to encrypt the hash of the trustlet (or certain parts of 

the trustlet). Only the correct public key can decrypt it, and then 

the trustlet can be verified. For security purposes, the key pairs 

are based on the chain of trust, originating from the hardware. 

 

Ideally, if the system is updated, the older software like trustlets 

cannot be loaded into the newer system. However, the trustlets 

can be replaced with their corresponding older versions. If the 

older version has a vulnerability and the newer version is patched, 

the attacker can still exploit the patched version by replacing it 

with an older one. We call it downgrade attack or rollback attack. 

 

A successful exploit first needs to have the root privilege of the 

device (e.g., exploit another vulnerability), and then use this issue 

combined with other vulnerabilities to exploit the device, potentially 

compromising the TrustZone/TEE (even its kernel). 

This vulnerability potentially impacts all the devices that are on the 

current market, though we do not have a thorough test and 

experiment. 

 

We run a real-world exploit on Nexus 6 and successfully use the 

downgrade attack to exploit a QSEE privilege escalation 

vulnerability (CVE-2015-6639). This vulnerability could be 

exploited in version LMY48M, but not N6F26Y. We replace 

N6F26Y’s widevine trustlets with the ones from LMY48M. Then 

the exploit works. 

 

The secure boot procedure has a chain of trust. In its boot 

sequence, each software image to be executed is authenticated 

by software that was previously verified. This design prevents 

unauthorized or tampered code from being run. Different devices 

could have different boot stages, including different bootloaders. 

For example, for Qualcomm’s MSM8960 chipset, SBL1 loads 

SBL2, and SBL2 loads tz and SBL3. Here the SBL stands for 

secondary bootloader. 

 

Similar to the loading verification of trustlets, the TrustZone OS 

also needs loading verification. Hence, it is under the haze of 

downgrade attack, too. In our experiments with Google Nexus 5, 

the TrustZone OS, even the bootloader, can be downgraded 

without failure.  We believe that this problem exists on more 

components in the chain of trust, potentially affecting the 

fundamental security of the whole system.  

ABSTRACT 


