
Remix: On-demand Live Randomization

Yue Chen, Zhi Wang, David Whalley, Long Lu*

Florida State University, Stony Brook University*

Background

• Buffer Overflow -> Code Injection Attack

Background

• Buffer Overflow -> Code Injection Attack

– Defense: Data Execution Prevention (DEP)

• Write XOR Execute: a block (page) of memory cannot
be marked as both writable and executable at the same
time.

Background

• Buffer Overflow -> Code Injection Attack

– Defense: Data Execution Prevention (DEP)

• Write XOR Execute: a block (page) of memory cannot
be marked as both writable and executable at the same
time.

• Return-oriented Programming (ROP) Attack

– Discover gadgets from existing code, and chain
them by ret instructions

– Can be Turing complete

Code Reuse Attack

Existing Code

Chained Gadgets

ROP Defense Strategy

• ROP is one example of a broad class of attacks that
require attackers to know or predict the locations of
binary features.

ROP Defense Strategy

• ROP is one example of a broad class of attacks that
require attackers to know or predict the locations of
binary features.

Defense Goal
Frustrate such attacks by randomizing feature

space, or remove features

ASLR
Address Space Layout Randomization

Executable

Library1

Library1

Executable

First-time Second-time

ASLR - Problem

Library1

Executable

Pointer Leak

ASLR - Problem

Library1

Executable

Pointer Leak

De-randomized

ASLR - Problem

Brute force attacks are still possible (When the
entropy is small. E.g., 32-bit systems.)

Randomized only once.

Goal

• Live randomization during runtime

• Finer-grained randomization unit

• Low performance overhead

• Highly composable
– Can and should be combined with other defenses

(traditional ASLR, function randomization, etc.)

Remix

Live basic block (BB) (re-)randomization
within functions

A basic block is a straight-line code without

jumps in or out of the middle of the block.

Remix

Live basic block (BB) (re-)randomization
within functions

Advantages:
• No function pointer migration
• Good spatial locality

A basic block is a straight-line code without

jumps in or out of the middle of the block.

Remix

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Space for
Alignment

Other Functions
…

Function A

Remix

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Space for
Alignment

Other Functions
…

Function A

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Other Functions
…

Function A

After
0.46 seconds

Remix

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Space for
Alignment

Other Functions
…

Function A

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Other Functions
…

Function A

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Other Functions
…

Function A

After
0.46 seconds

After
2.13 seconds

Challenges

• Chain randomized basic blocks together
– Need extra space to chain basic blocks

– Need to update instructions

• Stale pointer migration

Extra Space
Case 1: Extra Jmp

Basic Block 1

Basic Block 2

Basic Block 3

Jmp to BB1

(1) At the beginning of a function

Extra Space
Case 1: Extra Jmp

Basic Block 1

Basic Block 2

Basic Block 3

Jmp to BB1

(1) At the beginning of a function (2) At the end of a basic block that does
not end with an instruction like jmp/ret

mov …
add …
mov …

mov …
add …
jle …

Extra Space
Case 2: Larger Displacement

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Jump to BB3

Before Remix

Extra Space
Case 2: Larger Displacement

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Jump to BB3 Jump to BB3

Before Remix After Remix

Extra Space
Case 2: Larger Displacement

One-byte displacement:
jmp +0x10

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Jump to BB3 Jump to BB3

Four-byte displacement:
jmp +0x00001000

Before Remix After Remix

Extra Space
Solution

With Source Code:

Modify the compiler to:

1. Insert an extra 5-byte NOP

instruction after each basic block

2. Only generate instructions with

4-byte displacement

 Enough Space Guaranteed!

Extra Space
Solution

With Source Code:

Modify the compiler to:

1. Insert an extra 5-byte NOP

instruction after each basic block

2. Only generate instructions with

4-byte displacement

 Enough Space Guaranteed!

Without Source Code:

Leverage existing NOP paddings:

• Function alignment
• Loop alignment

Can insert random bytes into NOP
space after randomization, making
attack even harder.

Instruction Update

Q: Which instructions need updating ?

A: Control-flow related ones, to adjust displacement

Instruction Update

Two-step update (e.g., unconditional direct jmp):

Basic Block 1

Basic Block 2

Basic Block 3

Original After BB reordering
Step one:
Jumps to original
address of BB 3

Step two:
Jumps to current
address of BB 3

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 1

Basic Block 2

Basic Block 3

jmp

Instruction Update

• Direct call: step-one update

• Indirect call: no update needed

• Direct jump: step-one and step-two update

• Indirect jump: discussed later

• PC-relative addressing: step-one update

Indirect Jump

• Jump to functions – unchanged

– PLT/GOT

– Tail/Sibling Call

• Jump to basic blocks – see next

Basic Block Pointer Conversion

• Why?

- Migrate stale pointers to basic blocks, to ensure
correctness

Basic Block Pointer Conversion

• Why?

- Migrate stale pointers to basic blocks, to ensure
correctness

• Where?

- Return address

- Jump table (switch/case)

- Saved context (e.g., setjmp/longjmp)

- Kernel exception table

…

…

Call Foo

Return Site

…

…

main

Foo

Illustration - Return Address

…

Call Foo

Return Site

…

…

main

Foo

Illustration - Return Address

…

Call Foo

Return Site

…

…

main

Foo

Illustration - Return Address

Optimization

To Speed up the randomization procedure:

• Pre-store the required information

– Basic block information (e.g., locations)

– Code/data that need updating

Optimization
To speed up execution:

• Probabilistic loop bundling

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Loop

Bundle

Optimization
To speed up execution:

• Probabilistic loop bundling

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Loop

Basic Block 1

Bundled BB

Basic Block 4

Basic Block 5

Bundle

Optimization
To speed up execution:

• Probabilistic loop bundling

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Loop

Basic Block 1

Bundled BB

Basic Block 4

Basic Block 5

Basic Block 1

Bundled BB

Basic Block 4

Basic Block 5

Randomize

Bundle

Optimization
To speed up execution:

• Probabilistic loop bundling

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

Loop

Basic Block 1

Bundled BB

Basic Block 4

Basic Block 5

The bundling layout is different from time to time. – Unpredictable!

Basic Block 1

Bundled BB

Basic Block 4

Basic Block 5

Randomize

Implementation

• Can work on source code using a slightly

modified LLVM, or work directly on binaries.

• Can work on Linux user-space applications, and

FreeBSD kernel modules.

Evaluation - Security

• Finer-grained randomization:

– Adds about four bits of entropy to each instruction.

• Live randomization during runtime:

– Destroy discovered gadgets immediately after each
re-randomization.

 Software Apache nginx lighttpd

Average Basic Block Number
per Function

15.3 18.8 14.4

Average NOP Space (bytes)
per Function

19.3 26.2 22.1

Want more entropy? – Insert more NOP space!

Evaluation - Performance

SPEC CPU 2006 Performance Overhead (randomized once)

Evaluation - Performance

SPEC CPU 2006 Size Increase

Evaluation - Performance

Apache Web Server Performance Overhead (by ApacheBench)

Randomization Time Interval

Randomization time interval can be random ! Performance depends on hardware speed.

Evaluation - Performance

ReiserFS Performance Overhead (by IOZone)

Randomization Time Interval

Randomization time interval can be random ! Performance depends on hardware speed.

Q&A

