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– Defense: Data Execution Prevention (DEP) 

• Write XOR Execute: a block (page) of memory cannot 
be marked as both writable and executable at the same 
time. 

• Return-oriented Programming (ROP) Attack 

– Discover gadgets from existing code, and chain 
them by ret instructions 

– Can be Turing complete 
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Defense Goal 
Frustrate such attacks by randomizing feature 

space, or remove features 
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ASLR - Problem 

Brute force attacks are still possible (When the 
entropy is small. E.g., 32-bit systems.) 
 
Randomized only once. 



Goal 

• Live randomization during runtime 

• Finer-grained randomization unit 

• Low performance overhead 

• Highly composable  
– Can and should be combined with other defenses 

(traditional ASLR, function randomization, etc.)  
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Advantages: 
• No function pointer migration 
• Good spatial locality 

A basic block is a straight-line code without 

jumps in or out of the middle of the block. 
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Challenges 

• Chain randomized basic blocks together 
– Need extra space to chain basic blocks 

– Need to update instructions 

• Stale pointer migration 
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Basic Block 1 
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(1) At the beginning of a function (2) At the end of a basic block that does  
not end with an instruction like jmp/ret 

mov … 
add … 
mov … 

mov … 
add … 
jle … 
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With Source Code: 
 

Modify the compiler to: 

1.  Insert an extra 5-byte NOP  

instruction after each basic block 

2.  Only generate instructions with 

4-byte displacement 
 
 Enough Space Guaranteed! 

Without Source Code: 
 

Leverage existing NOP paddings: 
 
• Function alignment 
• Loop alignment 

 
Can insert random bytes into NOP 
space after randomization, making 
attack even harder. 



Instruction Update 

Q:  Which instructions need updating ? 

A:  Control-flow related ones, to adjust displacement 



Instruction Update 

Two-step update (e.g., unconditional direct jmp): 
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Instruction Update 

• Direct call: step-one update 

• Indirect call: no update needed 

• Direct jump: step-one and step-two update 

• Indirect jump: discussed later 

• PC-relative addressing: step-one update 

 



Indirect Jump 

• Jump to functions – unchanged 

– PLT/GOT 

– Tail/Sibling Call 

• Jump to basic blocks – see next 
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Basic Block Pointer Conversion 

• Why? 

- Migrate stale pointers to basic blocks, to ensure 
correctness 

• Where? 

- Return address 

- Jump table (switch/case) 

- Saved context (e.g., setjmp/longjmp) 

- Kernel exception table 

… 
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Optimization 

To Speed up the randomization procedure: 

•  Pre-store the required information 

–  Basic block information (e.g., locations) 

–  Code/data that need updating 
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Optimization 
To speed up execution: 

•  Probabilistic loop bundling 
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Implementation 

• Can work on source code using a slightly 

modified LLVM, or work directly on binaries.  

• Can work on Linux user-space applications, and 

FreeBSD kernel modules. 



Evaluation - Security 

• Finer-grained randomization: 

– Adds about four bits of entropy to each instruction. 

• Live randomization during runtime: 

– Destroy discovered gadgets immediately after each 
re-randomization. 

 Software Apache nginx lighttpd 

Average Basic Block Number 
per Function 

15.3 18.8 14.4 

Average NOP Space (bytes) 
per Function 

19.3 26.2 22.1 

Want more entropy? – Insert more NOP space! 
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