
1

Downgrade Attack on TrustZone

Yue Chen
1
, Yulong Zhang

2
, Zhi Wang

1
, Tao Wei

2

1
Florida State University

2
Baidu X-Lab

ABSTRACT

Security-critical tasks require proper isolation from untrusted software.

Chip manufacturers design and include trusted execution environments

(TEEs) in their processors to secure these tasks. The integrity and security

of the software in the trusted environment depend on the verification

process of the system.

We find a form of attack that can be performed on the current

implementations of the widely deployed ARM TrustZone technology. The

attack exploits the fact that the trustlet (TA) or TrustZone OS loading

verification procedure may use the same verification key and may lack

proper rollback prevention across versions. If an exploit works on an out-

of-date version, but the vulnerability is patched on the latest version, an

attacker can still use the same exploit to compromise the latest system by

downgrading the software to an older and exploitable version.

We did experiments on popular devices on the market, including those

from Google, Samsung and Huawei, and found that all of them have the

risk of being attacked. Also, we show a real-world example to exploit

Qualcomm's QSEE.

In addition, in order to find out which device images share the same

verification key, pattern matching schemes for different vendors are

analyzed and summarized.

1. BACKGROUND

To enhance the security of today’s computer systems, hardware manufacturers have

introduced a new security mechanism called trusted execution environment (TEE),

like ARM’s TrustZone (TZ) [1], which has a widespread deployment in the digital

world.

Basically, it has two separate worlds: one is called normal world and the other one is

secure world. Each world has its own operating system (OS) and user applications as

2

shown in Figure 1. In practice, the normal world contains untrusted software, and the

secure world contains trusted software. By design, the normal world is isolated from

the secure world by hardware-enforced mechanisms.

Figure 1: Overview of the typical TEE architecture

Simply put, the user applications and normal OS in the normal world are the

traditional ones, while the ones in the secure world have dedicated usages (e.g.,

digital rights management, authentication, etc.). We call the OS (privileged) in the

secure world trusted OS, and the user-space applications (unprivileged) are called

trustlets (also called trusted applications (TAs)). The two worlds communicate

through the secure monitor.

When the trusted OS loads a trustlet from its unprivileged mode, it first checks its

signature to see if it is signed by the right party and if the software is modified. This

integrity check aims at removing the risk of loading tampered trustlets.

By design, starting from the hardware (e.g., eFuse/qFuse or ROM), a chain of trust is

formed. This chain includes the bootloaders, the trusted OS, and derived certificates

or keys. This step-by-step verification procedure ensures the integrity of the secure

world. Potentially, the security and integrity of the whole system relies on this kind of

verification.

2. ATTACK DESCRIPTION

2.1 The Attack

When a trustlet is being loaded, its cryptographic digital signature will be validated.

Usually this signature is computed using a private key to encrypt the hash of the

trustlet (or certain parts of the trustlet). Only the correct public key can decrypt it, and

then the trustlet can be verified. For security purposes, the key pairs are based on the

3

chain of trust, originating from the hardware.

Ideally, if the system is updated, the older software like trustlets cannot be loaded into

the newer system. However, the trustlets can be replaced with their corresponding

older versions. If the older version has a vulnerability and the newer version is

patched, the attacker can still exploit the patched version by replacing it with an older

one. We call it downgrade attack or rollback attack.

A successful exploit first needs to have the root privilege of the device (e.g., exploit

another vulnerability), and then use this issue combined with other vulnerabilities to

exploit the device, potentially compromising the TrustZone/TEE (even its kernel).

This vulnerability potentially impacts all the devices that are on the current market,

though we do not have a thorough test and experiment.

In section 2.3, we will discuss the impact of downgrade attack on more components

of TEE, rather than only on trustlet loading.

2.2 Experiment

We did experiments on several phones from major vendors, including Google Nexus

5 and Nexus 6, Samsung Galaxy S7, Huawei Mate 9. The results show that this attack

works on all of them. We also have read the documents and code of the open-source

OP-TEE [2], and found that it potentially has the same problem, though we did not do

experiments on its platform.

To reproduce the procedure, the steps are as follows:

1. Root the device.

2. Remount the file system that contains the trustlets (e.g., “mount -o rw,remount

/system”).

3. Replace the current trustlets with the corresponding (vulnerable) ones from an

older-version image.

4. Use the device as normal.

To test if the trustlets can still work correctly, we could use apps that can

communicate with the corresponding trustlets to check their functionality. Or we can

write one by ourselves (e.g., QSEECom_start_app for QSEE). Another approach is

to read TrustZone logs. The logs stay in different places for different models; here are

some possible locations:

dmesg

/sys/kernel/debug/

/d/

/dev/hisi_teelog (Huawei’s devices)

4

Also note that the trustlets are in different formats, as well as file extensions and

paths, on different vendors’ platforms. Note that for the same phone model, there may

exist different patterns for different versions or builds. Some of the parameters in our

experimentation are listed for further reference:

Nexus 5 and Nexus 6:

/system/vendor/firmware/

The trustlets have a set of files. For example, for widevine:

widevine.b00

widevine.b01

widevine.b02

widevine.b03

widevine.mdt

Samsung Galaxy S7:

/system/app/mcRegistry/

The trustlets are named as [UUID].tlbin

(In some older versions, the path is /data/app/mcRegistry/)

Huawei Mate 9:

/vendor/bin/

The trustlets are named as [UUID].sec

Other paths also contain some *.sec files, like

/product/bin/

/sbin/

We ran a real-world exploit [3,4] on Nexus 6, and successfully used the downgrade

attack to exploit a QSEE privilege escalation vulnerability (CVE-2015-6639).

This vulnerability could be exploited in version LMY48M, but not N6F26Y. We

replaced N6F26Y’s widevine trustlets with the ones from LMY48M. Then the exploit

worked successfully.

5

2.3 Attack on TrustZone OS, Bootloader, and More

The secure boot procedure has a chain of trust. In its boot sequence, each software

image to be executed is authenticated by software that was previously verified. This

design prevents unauthorized or tampered code from being run. Different devices

could have different boot stages, including different bootloaders. For example, for

Qualcomm’s MSM8960 chipset, SBL1 loads SBL2, and SBL2 loads tz and SBL3.

Here the SBL stands for secondary bootloader.

Similar to the loading verification of trustlets, the TrustZone OS also needs loading

verification. Hence, it is under the haze of downgrade attack, too. In our experiments

with Google Nexus 5, the TrustZone OS, even the bootloader, can be downgraded

without failure. Since the principle and experimentation are similar to trustlet

verification, we do not dig into the details here.

We believe that this problem exists on more components in the chain of trust,

potentially affecting the fundamental security of the whole system.

2.4 Solution

To defeat this attack, the obvious solution is to use different key pairs for different

versions. However, due to the complexity of the chain of trust, device distribution and

compatibility issues, this method is relatively difficult to implement for the whole

ecosystem especially for old devices.

Another reasonable and ideal solution is to use version control for rollback prevention.

To make it easy, one can increase the version number upon finding vulnerabilities in

its older version. In reality, some TEE vendors already have this mechanism

implemented (see Section 3). However, based on the responses from phone vendors,

the solution is also not so practical. First, like the first solution, it may take too many

resources to completely fix this issue, especially for old devices on the current market.

Second, the successful exploit depends on other vulnerabilities. If all other

vulnerabilities are fixed or not related to this issue, the devices cannot be exploited.

Third, taking user experience into consideration, this issue somewhat can be regarded

as a feature. For example, end users may want to downgrade certain parts of the

system to meet their own needs.

Based on the responses from vendors up to now, Samsung is supporting the fix since

the Galaxy S8/S8+ devices.

3. COMPATIBILITY MATCHING

If one needs to write a scanner to see if two image versions can load their trustlets

mutually, or to cluster images into such groups, here we provide a pattern matching

analysis on the TEE implementations of different device vendors. To ensure the

compatibility of the trustlets across versions, they may need the API compatibility

with the TEE OS, and may need to pass the version check if there is any. Qualcomm

6

does have the version control parameter SW_ID [5], but it is not properly configured,

as most of the images have the value of 0 (Trustonic's situation is similar). Hence,

the most important is the signature verification. This procedure requires the correct

public key or certificate to verify the trustlet. If it fails, the trustlet cannot be loaded.

Until now in our experiments, we find that the keys are the determining factor for

load verification. Thus, next we will focus on this factor and describe our findings on

different platforms. Through reverse engineering and analysis, we try to scan the TEE

OS images to see which trustlet/image pairs can be mutually replaceable.

All the following analyses are based on our reverse engineering, observations, and

guesswork. The correctness and generality are not guaranteed.

3.1 Google Nexus

Figure 2: The certificate pattern in the “tz” image of Google Nexus 6

First we take a look at Google Nexus 6 (Nexus 5 is very similar). The TrustZone

image can be found at /dev/block/platform/msm_sdcc.1/by-name/. Its name is “tz”.

Another one called “tzBackup” (“tzb” in Nexus 5) is its identical backup [6,7].

The certificates are embedded in the image. There are three certificates (could be two

in other devices) that form a certificate chain. We open the image in a hex editor. As

shown in Figure 2, if the hexadecimal pattern is

30 82 [XX] [XX] 30 82 ...

then we can say that it is the beginning of a certificate with DER (Distinguished

Encoding Rules) encoding. Note that 30 82 are 0x30 and 0x82 in hex, and the two

bytes in between can be random.

7

Once finding the beginning of a certificate, we can save the raw data from the hex

editor, and the certificate can be decoded using openssl:

openssl x509 -in cert.der -inform der -text

Here, the saved data length could be the distance starting from this pattern to the next

same pattern. The actual length does not matter since openssl will automatically

identify the certificate and discard the following useless part. Here the certificates

follow the X.509 v3 format.

Note that in Figure 2, there exists another (third) “30 82” at the line beginning at

address 1400h. This one is not the described pattern and does not affect the decoding,

therefore we can ignore it. Once getting the certificates, we can compare them against

the ones from another image to see if their trustlets can be mutually replaced.

3.2 Samsung

Samsung has two TrustZone vendors. One is Qualcomm, usually for the phones in

North America; another one is Trustonic (formerly MobiCore), for the rest of the

world. We analyze them separately in our study.

3.2.1 Qualcomm:

The Qualcomm TrustZone image is a standalone one, called “tz.mbn”. As shown in

Figure 3, the pattern is very similar to the one in Google Nexus 6. This is because

their vendors are the same, Qualcomm. And its TEE is called QSEE (Qualcomm's

Secure Execution Environment). So we can use the same pattern to extract the

certificates and compare them from different image versions.

Figure 3: The certificate pattern in the “tz.mbn” image of Samsung S7 (USA version)

8

Through reversing engineering, we also found two other RSA public keys with the

exponent of 65537, embedded in the TrustZone image. We guess they are used for

other purposes.

3.2.2 Trustonic/Mobicore:

Trustonic (formerly Mobicore) is another TrustZone vendor for Samsung’s mobile

devices. Its TEE implementation is embedded in the image “sboot.bin”.

With the investigation into its images, we found a reasonable pattern as follows:

00 01 00 00 [256 bytes] 01 00 00 00 03 ...

The example is shown in Figure 4. What needs to be compared is the 256-byte blob

between “00 01 00 00” and “01 00 00 00 03”. A standalone 256-byte blob

cannot form an RSA-2048 public key or a standard certificate. However, since the

RSA public exponent is usually set as 65537 or 3, which can be easily embedded

elsewhere, we guess this 256-byte (2048-bit) blob is the modulus of an RSA public

key, which is enough for comparison purposes.

Figure 4: The public key pattern in the “sboot.bin” image of Samsung S7 (UAE version)

3.3 Huawei

Huawei’s TrustZone image is named as “TEEOS.img”, and can be extracted from its

update package “UPDATE.APP”.

We did reverse engineering analysis on the raw image with a series of steps, including

symbol lookup table recovery, segment fix, etc. The result shows that it does not have

the needed public key or certificate embedded in the firmware. We found that the

public key used for Trusted Application (TA) signature verification derives from the

hardware.

As shown in Figure 5, the blob of 0’s starting at seg1:0x0017D73C is used to hold

9

the derived public key. This area will be filled with the key during runtime. So we are

unable to extract it statically. This screenshot is taken from IDA Pro, on one version

of Huawei Mate 9 Pro. During disassembly, we created a new segment so that the

addresses are different from the original ones.

On the TEE user-space part, interestingly, Huawei’s TAs (trustlets) are encrypted.

Thus, analysis on them needs decryption first.

Figure 5: The unloaded public key region in the “TEEOS.img” image of Huawei Mate 9 Pro

3.4 OP-TEE

Since the OP-TEE platform is open-source, it is relatively easy to analyze its logic

and trustlet loading verification mechanism. Thus we omit its analysis here.

10

4. RELATED WORK

TEE’s strong-isolation capability and its security-sensitivity make it an interesting

topic for security researchers and industrial security practitioners. Several

vulnerabilities have been discovered to break certain TEE implementations

[4,8,9,10,11,12]. A set of security systems leveraging TEE are also proposed [13,14].

Other related works include TrustZone virtualization [15] and analysis on vendor

implementations [16,17].

5. CONCLUSION

In this work, we give an overview of the TEE design, describe the downgrade attack

on TEE, and show how to reproduce the experiment results in detail. In addition, the

analyses on the compatibility matching schemes are given for further reference.

REFERENCES

[1] ARM. ARM TrustZone.

http://www.arm.com/products/processors/technologies/trustzone/index.php.

[2] OP-TEE. https://github.com/OP-TEE.

[3] CVE-2015-6639. https://nvd.nist.gov/vuln/detail/CVE-2015-6639

[4] CVE-2015-6639 Exploit. https://github.com/laginimaineb/cve-2015-6639.

[5] Qualcomm. Secure Boot and Image Authentication Technical Overview.

https://www.qualcomm.com/documents/secure-boot-and-image-authentication-technical-

overview.

[6] laginimaineb. Bits, Please!. http://bits-please.blogspot.com/2015/08/exploring-

qualcomms-trustzone.html

[7] laginimaineb. Bits, Please!. http://bits-please.blogspot.com/2016/04/exploring-

qualcomms-secure-execution.html

[8] Rosenberg, D. QSEE TrustZone Kernel Integer Overflow Vulnerability. Black Hat USA

2014.

[9] Shen, D. Exploiting Trustzone on Android. Black Hat USA 2015.

[10] Zhang, Y., Chen, Z., Xue, H. and Wei, T. Fingerprints On Mobile Devices: Abusing and

Leaking. Black Hat USA 2015.

[11] Machiry, A., Gustafson, E., Spensky, C., Salls, C., Stephens, N., Wang, R., Bianchi, A.,

Choe, Y.R., Kruegel, C. and Vigna, G. BOOMERANG: Exploiting the Semantic Gap in

Trusted Execution Environments. NDSS 2017.

[12] Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M. and Kang,

B.B. Hacking in Darkness: Return-oriented Programming against Secure Enclaves.

USENIX Security 2017.

[13] Azab, A.M., Ning, P., Shah, J., Chen, Q., Bhutkar, R., Ganesh, G., Ma, J. and Shen, W.

https://github.com/OP-TEE
https://nvd.nist.gov/vuln/detail/CVE-2015-6639
https://github.com/laginimaineb/cve-2015-6639
http://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html
http://bits-please.blogspot.com/2016/04/exploring-qualcomms-secure-execution.html

11

Hypervision Across Worlds: Real-time Kernel Protection from the ARM TrustZone Secure

World. CCS 2014.

[14] Guan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M. and Jaeger, T. TrustShadow:

Secure Execution of Unmodified Applications with ARM TrustZone. MobiSys 2017.

[15] Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B. and Guan, H. vTZ: Virtualizing ARM

TrustZone. USENIX Security 2017.

[16] Kanonov, U. and Wool, A. Secure Containers in Android: the Samsung KNOX Case

Study. SPSM 2016.

[17] Atamli-Reineh, A., Borgaonkar, R., Balisane, R.A., Petracca, G. and Martin, A. Analysis

of Trusted Execution Environment usage in Samsung KNOX. SysTEX 2016.

