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ABSTRACT 

Security-critical tasks require proper isolation from untrusted software. 

Chip manufacturers design and include trusted execution environments 

(TEEs) in their processors to secure these tasks. The integrity and security 

of the software in the trusted environment depend on the verification 

process of the system. 

We find a form of attack that can be performed on the current 

implementations of the widely deployed ARM TrustZone technology. The 

attack exploits the fact that the trustlet (TA) or TrustZone OS loading 

verification procedure may use the same verification key and may lack 

proper rollback prevention across versions. If an exploit works on an out-

of-date version, but the vulnerability is patched on the latest version, an 

attacker can still use the same exploit to compromise the latest system by 

downgrading the software to an older and exploitable version. 

We did experiments on popular devices on the market, including those 

from Google, Samsung and Huawei, and found that all of them have the 

risk of being attacked. Also, we show a real-world example to exploit 

Qualcomm's QSEE. 

In addition, in order to find out which device images share the same 

verification key, pattern matching schemes for different vendors are 

analyzed and summarized. 

1. BACKGROUND 

To enhance the security of today’s computer systems, hardware manufacturers have 

introduced a new security mechanism called trusted execution environment (TEE), 

like ARM’s TrustZone (TZ) [1], which has a widespread deployment in the digital 

world. 

Basically, it has two separate worlds: one is called normal world and the other one is 

secure world. Each world has its own operating system (OS) and user applications as 
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shown in Figure 1. In practice, the normal world contains untrusted software, and the 

secure world contains trusted software. By design, the normal world is isolated from 

the secure world by hardware-enforced mechanisms. 

 

 

Figure 1: Overview of the typical TEE architecture 

 

Simply put, the user applications and normal OS in the normal world are the 

traditional ones, while the ones in the secure world have dedicated usages (e.g., 

digital rights management, authentication, etc.). We call the OS (privileged) in the 

secure world trusted OS, and the user-space applications (unprivileged) are called 

trustlets (also called trusted applications (TAs)). The two worlds communicate 

through the secure monitor. 

When the trusted OS loads a trustlet from its unprivileged mode, it first checks its 

signature to see if it is signed by the right party and if the software is modified. This 

integrity check aims at removing the risk of loading tampered trustlets. 

By design, starting from the hardware (e.g., eFuse/qFuse or ROM), a chain of trust is 

formed. This chain includes the bootloaders, the trusted OS, and derived certificates 

or keys. This step-by-step verification procedure ensures the integrity of the secure 

world. Potentially, the security and integrity of the whole system relies on this kind of 

verification. 

2.  ATTACK DESCRIPTION 

2.1 The Attack 

When a trustlet is being loaded, its cryptographic digital signature will be validated. 

Usually this signature is computed using a private key to encrypt the hash of the 

trustlet (or certain parts of the trustlet). Only the correct public key can decrypt it, and 

then the trustlet can be verified. For security purposes, the key pairs are based on the 
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chain of trust, originating from the hardware. 

Ideally, if the system is updated, the older software like trustlets cannot be loaded into 

the newer system. However, the trustlets can be replaced with their corresponding 

older versions. If the older version has a vulnerability and the newer version is 

patched, the attacker can still exploit the patched version by replacing it with an older 

one. We call it downgrade attack or rollback attack. 

A successful exploit first needs to have the root privilege of the device (e.g., exploit 

another vulnerability), and then use this issue combined with other vulnerabilities to 

exploit the device, potentially compromising the TrustZone/TEE (even its kernel). 

This vulnerability potentially impacts all the devices that are on the current market, 

though we do not have a thorough test and experiment. 

In section 2.3, we will discuss the impact of downgrade attack on more components 

of TEE, rather than only on trustlet loading. 

2.2 Experiment 

We did experiments on several phones from major vendors, including Google Nexus 

5 and Nexus 6, Samsung Galaxy S7, Huawei Mate 9. The results show that this attack 

works on all of them. We also have read the documents and code of the open-source 

OP-TEE [2], and found that it potentially has the same problem, though we did not do 

experiments on its platform. 

To reproduce the procedure, the steps are as follows: 

1. Root the device. 

2. Remount the file system that contains the trustlets (e.g., “mount -o rw,remount 

/system”). 

3. Replace the current trustlets with the corresponding (vulnerable) ones from an 

older-version image. 

4. Use the device as normal. 

 

To test if the trustlets can still work correctly, we could use apps that can 

communicate with the corresponding trustlets to check their functionality. Or we can 

write one by ourselves (e.g., QSEECom_start_app for QSEE). Another approach is 

to read TrustZone logs. The logs stay in different places for different models; here are 

some possible locations: 

dmesg 

/sys/kernel/debug/ 

/d/ 

/dev/hisi_teelog     (Huawei’s devices) 
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Also note that the trustlets are in different formats, as well as file extensions and 

paths, on different vendors’ platforms. Note that for the same phone model, there may 

exist different patterns for different versions or builds. Some of the parameters in our 

experimentation are listed for further reference: 

 

Nexus 5 and Nexus 6: 

/system/vendor/firmware/ 

The trustlets have a set of files. For example, for widevine: 

widevine.b00 

widevine.b01 

widevine.b02 

widevine.b03 

widevine.mdt 

 

Samsung Galaxy S7: 

/system/app/mcRegistry/ 

The trustlets are named as [UUID].tlbin 

(In some older versions, the path is /data/app/mcRegistry/) 

 

Huawei Mate 9: 

/vendor/bin/ 

The trustlets are named as [UUID].sec 

Other paths also contain some *.sec files, like 

/product/bin/ 

/sbin/ 

 

We ran a real-world exploit [3,4] on Nexus 6, and successfully used the downgrade 

attack to exploit a QSEE privilege escalation vulnerability (CVE-2015-6639). 

This vulnerability could be exploited in version LMY48M, but not N6F26Y. We 

replaced N6F26Y’s widevine trustlets with the ones from LMY48M. Then the exploit 

worked successfully. 
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2.3 Attack on TrustZone OS, Bootloader, and More 

The secure boot procedure has a chain of trust. In its boot sequence, each software 

image to be executed is authenticated by software that was previously verified. This 

design prevents unauthorized or tampered code from being run. Different devices 

could have different boot stages, including different bootloaders. For example, for 

Qualcomm’s MSM8960 chipset, SBL1 loads SBL2, and SBL2 loads tz and SBL3. 

Here the SBL stands for secondary bootloader. 

Similar to the loading verification of trustlets, the TrustZone OS also needs loading 

verification. Hence, it is under the haze of downgrade attack, too. In our experiments 

with Google Nexus 5, the TrustZone OS, even the bootloader, can be downgraded 

without failure. Since the principle and experimentation are similar to trustlet 

verification, we do not dig into the details here. 

We believe that this problem exists on more components in the chain of trust, 

potentially affecting the fundamental security of the whole system.  

2.4 Solution 

To defeat this attack, the obvious solution is to use different key pairs for different 

versions. However, due to the complexity of the chain of trust, device distribution and 

compatibility issues, this method is relatively difficult to implement for the whole 

ecosystem especially for old devices. 

Another reasonable and ideal solution is to use version control for rollback prevention. 

To make it easy, one can increase the version number upon finding vulnerabilities in 

its older version. In reality, some TEE vendors already have this mechanism 

implemented (see Section 3). However, based on the responses from phone vendors, 

the solution is also not so practical. First, like the first solution, it may take too many 

resources to completely fix this issue, especially for old devices on the current market. 

Second, the successful exploit depends on other vulnerabilities. If all other 

vulnerabilities are fixed or not related to this issue, the devices cannot be exploited. 

Third, taking user experience into consideration, this issue somewhat can be regarded 

as a feature. For example, end users may want to downgrade certain parts of the 

system to meet their own needs. 

Based on the responses from vendors up to now, Samsung is supporting the fix since 

the Galaxy S8/S8+ devices. 

3.  COMPATIBILITY MATCHING 

If one needs to write a scanner to see if two image versions can load their trustlets 

mutually, or to cluster images into such groups, here we provide a pattern matching 

analysis on the TEE implementations of different device vendors. To ensure the 

compatibility of the trustlets across versions, they may need the API compatibility 

with the TEE OS, and may need to pass the version check if there is any. Qualcomm 
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does have the version control parameter SW_ID [5], but it is not properly configured, 

as most of the images have the value of 0 (Trustonic's situation is similar). Hence, 

the most important is the signature verification. This procedure requires the correct 

public key or certificate to verify the trustlet. If it fails, the trustlet cannot be loaded. 

Until now in our experiments, we find that the keys are the determining factor for 

load verification. Thus, next we will focus on this factor and describe our findings on 

different platforms. Through reverse engineering and analysis, we try to scan the TEE 

OS images to see which trustlet/image pairs can be mutually replaceable. 

All the following analyses are based on our reverse engineering, observations, and 

guesswork. The correctness and generality are not guaranteed. 

3.1 Google Nexus 

 

Figure 2: The certificate pattern in the “tz” image of Google Nexus 6 

 

First we take a look at Google Nexus 6 (Nexus 5 is very similar). The TrustZone 

image can be found at /dev/block/platform/msm_sdcc.1/by-name/. Its name is “tz”. 

Another one called “tzBackup” (“tzb” in Nexus 5) is its identical backup [6,7]. 

The certificates are embedded in the image. There are three certificates (could be two 

in other devices) that form a certificate chain. We open the image in a hex editor. As 

shown in Figure 2, if the hexadecimal pattern is 

30 82 [XX] [XX] 30 82 ... 

then we can say that it is the beginning of a certificate with DER (Distinguished 

Encoding Rules) encoding. Note that 30 82 are 0x30 and 0x82 in hex, and the two 

bytes in between can be random. 
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Once finding the beginning of a certificate, we can save the raw data from the hex 

editor, and the certificate can be decoded using openssl: 

openssl x509 -in cert.der -inform der -text 

Here, the saved data length could be the distance starting from this pattern to the next 

same pattern. The actual length does not matter since openssl will automatically 

identify the certificate and discard the following useless part. Here the certificates  

follow the X.509 v3 format. 

Note that in Figure 2, there exists another (third) “30 82” at the line beginning at 

address 1400h. This one is not the described pattern and does not affect the decoding, 

therefore we can ignore it. Once getting the certificates, we can compare them against 

the ones from another image to see if their trustlets can be mutually replaced. 

3.2 Samsung 

Samsung has two TrustZone vendors. One is Qualcomm, usually for the phones in 

North America; another one is Trustonic (formerly MobiCore), for the rest of the 

world. We analyze them separately in our study. 

3.2.1 Qualcomm: 

The Qualcomm TrustZone image is a standalone one, called “tz.mbn”. As shown in 

Figure 3, the pattern is very similar to the one in Google Nexus 6. This is because 

their vendors are the same, Qualcomm. And its TEE is called QSEE (Qualcomm's 

Secure Execution Environment). So we can use the same pattern to extract the 

certificates and compare them from different image versions. 

 

Figure 3: The certificate pattern in the “tz.mbn” image of Samsung S7 (USA version) 
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Through reversing engineering, we also found two other RSA public keys with the 

exponent of 65537, embedded in the TrustZone image. We guess they are used for 

other purposes. 

3.2.2 Trustonic/Mobicore: 

Trustonic (formerly Mobicore) is another TrustZone vendor for Samsung’s mobile 

devices. Its TEE implementation is embedded in the image “sboot.bin”. 

With the investigation into its images, we found a reasonable pattern as follows: 

00 01 00 00 [256 bytes] 01 00 00 00 03 ... 

The example is shown in Figure 4. What needs to be compared is the 256-byte blob 

between “00 01 00 00” and “01 00 00 00 03”. A standalone 256-byte blob 

cannot form an RSA-2048 public key or a standard certificate. However, since the 

RSA public exponent is usually set as 65537 or 3, which can be easily embedded 

elsewhere, we guess this 256-byte (2048-bit) blob is the modulus of an RSA public 

key, which is enough for comparison purposes. 

 

Figure 4: The public key pattern in the “sboot.bin” image of Samsung S7 (UAE version) 

3.3 Huawei 

Huawei’s TrustZone image is named as “TEEOS.img”, and can be extracted from its 

update package “UPDATE.APP”. 

We did reverse engineering analysis on the raw image with a series of steps, including 

symbol lookup table recovery, segment fix, etc. The result shows that it does not have 

the needed public key or certificate embedded in the firmware. We found that the 

public key used for Trusted Application (TA) signature verification derives from the 

hardware. 

As shown in Figure 5, the blob of 0’s starting at seg1:0x0017D73C is used to hold 
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the derived public key. This area will be filled with the key during runtime. So we are 

unable to extract it statically. This screenshot is taken from IDA Pro, on one version 

of Huawei Mate 9 Pro. During disassembly, we created a new segment so that the 

addresses are different from the original ones. 

On the TEE user-space part, interestingly, Huawei’s TAs (trustlets) are encrypted. 

Thus, analysis on them needs decryption first. 

 

 

Figure 5: The unloaded public key region in the “TEEOS.img” image of Huawei Mate 9 Pro 

3.4 OP-TEE 

Since the OP-TEE platform is open-source, it is relatively easy to analyze its logic 

and trustlet loading verification mechanism. Thus we omit its analysis here. 
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4. RELATED WORK 

TEE’s strong-isolation capability and its security-sensitivity make it an interesting 

topic for security researchers and industrial security practitioners. Several 

vulnerabilities have been discovered to break certain TEE implementations 

[4,8,9,10,11,12]. A set of security systems leveraging TEE are also proposed [13,14]. 

Other related works include TrustZone virtualization [15] and analysis on vendor 

implementations [16,17]. 

5. CONCLUSION 

In this work, we give an overview of the TEE design, describe the downgrade attack 

on TEE, and show how to reproduce the experiment results in detail. In addition, the 

analyses on the compatibility matching schemes are given for further reference. 
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