Pinpointing Vulnerabilities

Yue Chen, Mustakimur Khandaker, Zhi Wang
Florida State University

Pinpointing Vulnerabilities

Question

« When an attack is detected, how to locate the
underlying vulnerability?

Attack -|$ ' Vulnerability

Example

Il int main(int argc, char *argv[])

2 {

3 char buf[16];

4 strcpy(buf, argv[1l]);|e Root Cause
5 printf("%s\n", buf);

6 return 0; ¢ Symptom

7 }

A control-flow violation Is detected at line 6.
* The vulnerability lies at line 4 (buffer overflow).

Pinpointing Vulnerabilities 3

Attack Detection v.s. Vulnerability Locating

« Control-flow Integrity (CFl)

— Detect the control-flow graph violation (e.g., on
function returns)

« Taint Analysis
— Detect tainted data being loaded to PC

« System Call Interposition
— Detect abnormal syscalls made by the payload

Manifestation of attack rarely coincides
with the vulnerabilities

Ravel — Three Components

. RAVEL:
* Online attack detector Root-cause
: : : Analysis of
* Record & replay with instrumentation |y nerabilities from
- Offline vulnerability locator Egz'o“at“)”
: ; Process
Target Checkpoint
Process
User / Attack Detector \\ Vulnerability Detector
Kernel Record Agent /E Lo \ Replay Agent
NExetution -
8-

Phase |: Normal Execution : Phase II: Vulnerability Detection

Ravel — Strengths

1. Reliably reproduce real-world attacks in the lab
environment

2. Low online performance overhead
— Locating vulnerabilities Is time-consuming

3. Extensible:

— New attack detection and vulnerability locating
techniques can be easily integrated

— (already support a variety of vulnerability locating
technigues)

Pinpointing Vulnerabilities 6

Attack Detection

* Ravel uses existing attack detection methods
— Program crash (or other exceptions)
— Abnormal system calls (sequence/arguments)
— Control-flow integrity violation (to be included)

 New methods can be easily adopted by Ravel

Pinpointing Vulnerabilities 7

Record & Replay

 What to record & replay?
— All the non-deterministic inputs (e.g., network packets)

 Where to record & replay?
— Application interface
— Library interface
— Virtual machine interface
— System call interface

Pinpointing Vulnerabilities 8

Record & Replay

 What to record & replay?
— All the non-deterministic inputs (e.g., network packets)

 Where to record & replay?

— [System call interface

l

More robust against attacks, with low cost

Pinpointing Vulnerabilities 9

Record

System call return values

Userspace data structures modified by syscalls

Data copied from kernel to userspace

Asynchronous signals

Special instructions (e.g., RDTSC)

Synchronization primitives

Replay with Instrumentation

« Some syscalls replayed without real execution
— e.g., gettimeofday

« Some syscalls need to be re-executed
— e.g., mmap

* Replay under a binary translation (BT) engine
— BT collects detailed memory accesses by the target

— Replay distinguishes syscalls made by the target from
those made by BT

Pinpointing Vulnerabilities 11

Vulnerability Locator

Data-flow Analysis

A

Integer Errors Race Condition

N

Use-after-free
Double-free

Pinpointing Vulnerabilities 12

Data-flow Analysis

* Analyze def-use relations between instructions
« Define: writes to a memory address
« Use: reads from a memory address

It read
/\ write E3

define use

Pinpointing Vulnerabilities 13

Data-flow Analysis

* Analyze def-use relations between instructions
« Define: writes to a memory address
« Use: reads from a memory address

Pinpointing Vulnerabilities 14

Data-flow Analysis

* Precompute a data-flow graph (DFG)
— DFG: the valid def-use relations in the program
— Our prototype uses dynamic analysis

Pinpointing Vulnerabilities 15

Data-flow Analysis

* Precompute a data-flow graph (DFG)
— DFG: the valid def-use relations in the program
— Our prototype uses dynamic analysis
— Extra relations regarded as violations

A

Pinpointing Vulnerabilities 16

Data-flow Analysis

* Precompute a data-flow graph (DFG)
— DFG: the valid def-use relations in the program
— Our prototype uses dynamic analysis
— Extra relations regarded as violations

 Violation to DFG indicates the vulnerability location
— It could be the def or the use, but which one?
— Refine the results with heuristics

A

Pinpointing Vulnerabilities 17

Data-flow Analysis Heuristics

* One def, many uses:

def is closer to the vulnerabllity
— Example: buffer overflow

I LISe
I—> LSe
I lSe

Pinpointing Vulnerabilities

@ — Normal
@ — Violating

18

Data-flow Analysis Heuristics

* One def, many uses:

def is closer to the vulnerabllity
— Example: buffer overflow

—_—
def use @ — Normal
use @ — Vviolating
use

Pinpointing Vulnerabilities 19

Data-flow Analysis Heuristics

 One def, many uses:

def is closer to the vulnerability
— Example: buffer overflow

def
use

use
use

Pinpointing Vulnerabilities 20

Data-flow Analysis Heuristics

 One def, many uses:

def is closer to the vulnerability
— Example: buffer overflow

def
use

use
use

 Many defs, one use:

use is closer to the vulnerability
— Example: information leakage

Pinpointing Vulnerabilities 21

Integer Errors

* Focus on common integer errors

— Start from common functions/instructions that take
Integer operands
* E.g., memcpy, recvfrom; movs, stos...

— Search backwards for integer errors

« Example:
memcpy (void * destination, const void * source, size_t num);
Search from num backwards for integer errors.

Pinpointing Vulnerabilities 22

Integer Errors

« Assignment truncation (e.g., 0x12345678 — 0x5678)
— To detect: assign from a longer to a shorter integer type

* Integer overflow/underflow (e.g., OXFFFFFFFF + 1)
— To detect: check the RFLAGS register

« Signedness error (e.g., unsigned_int var = signed_int_var)
— To detect: collect hints from functions and instructions
* Instructions: jg, jge, ja, jae, cmovg, cmova, idiv, div, etc.
« Functions: memmove, strncat, etc.

Pinpointing Vulnerabilities 23

Integer Errors

Assignment truncation (e.g., 0x12345678 — 0x5678)
— To detect: assign from a longer to a shorter integer type

Integer overflow/underflow (e.g., OXFFFFFFFF + 1)
— To detect: check the RFLAGS register

Signedness error (e.g., unsigned_int_var = signed_int_var)
— To detect: collect hints from functions and instructions
* Instructions: jg, jge, ja, jae, cmovg, cmova, idiv, div, etc.

« Functions: memmove, strncat, etc.

Benign integer errors?
— Related to a reported vulnerability!

Pinpointing Vulnerabilities 24

Use-after-free and Double-free

« Ravel instruments memory allocation/free
functions to track the memory life-time

« Use-after-free: freed memory is accessed again

 Double-free: memory freed more than once
without re-allocation

Pinpointing Vulnerabilities 25

Race Condition

* When race condition happens, the execution
deviates from the recorded one

— as we do not implement strict R&R

* When detected, use the happens-before relation
to check for race conditions

Pinpointing Vulnerabilities 26

Implementation

« Record & replay:
— FreeBSD release 10.2
— Kernel modification + small user-space utility

« Vulnerability locator:
— Extended from Valgrind

Pinpointing Vulnerabilities 27

Evaluation — Effectiveness

Buffer overflow

Integer errors

Information leakage
Use-after-free and double-free
Format string vulnerabilities

Pinpointing Vulnerabilities 28

CVE-2013-2028 of Nginx

u_char buffer [NGX_HTTP_DISCARD_BUFFER_SIZE];

size = (size_t) ngx_min(r->headers_in.
content_length_n, NGX_HTTP_DISCARD_BUFFER_SIZE
) ;

n=r->connection->recv(r->connection, buffer, size);

Pinpointing Vulnerabilities 29

CVE-2013-2028 of Nginx

signed comparison

u_char buffer [NGX_HTTP/DISCARD_BUFFER_SIZE];

size

= (size_t)

ngx_min

content_length_n|,

);

(r->headers_in.
NGX_HTTP_DISCARD_BUFFER_SIZE

=r->connection->recv(r->connection, buffer, size);

unsigned

signed

Pinpointing Vulnerabilities

30

CVE-2013-2028 of Nginx

signed comparison

u_char buffer [NGX_HTTP/DISCARD_BUFFER_SIZE];

size

= (size_t)

ngx_min

content_length_n|,

);

(r->headers_in.
NGX_HTTP_DISCARD_BUFFER_SIZE

=r->connection->recv(r->connection, buffer, |size);

unsigned

signed

Pinpointing Vulnerabilities

larger than expected

31

CVE-2013-2028 of Nginx

signed comparison

u_char buffer [NGX_HTTP/DISCARD_BUFFER_SIZE];

size

) ;
=r->connection->recv(r->connection, buffer, |size);

= (size_t)

ngx_min

content_length_n|,

(r->headers_in.
NGX_HTTP_DISCARD_BUFFER_SIZE

unsigned signed \ larger than expected

buffer overflow

Pinpointing Vulnerabilities

32

CVE-2013-2028 of Nginx

signed comparison Ravel

u_char buffer [NGX_HTTP/DISCARD_BUFFER_SIZE];

size| = (size_t) |ngx_min|/(r->headers_in. Signedness
content_length_n|, NGX_HTTP_DISCARD_BUFFER_SIZE Conflict

); Data-flow
=r->connection->recv(r->connection, buffer, |size);

Violation
unsigned signed larger than expected
Memory

Exception
buffer overflow .

Pinpointing Vulnerabilities 33

Evaluation — Effectiveness

 More examples are in the paper (Heartbleed, etc.)

Program Name Vulnerability Type Pinpointed?
BitBlaster Null Pointer Derefernece Yes
Heap Overflow Yes
CGC_Planet_Markup_Language_Parser NULL Pointer Dereference Yes
StackOverflow Yes
CGC_Board Heap Overflow Yes
CGC_Symbol_Viewer_CSV Integer Overflow Yes
CGC_Video_Format_Parser_and_Viewer Heap Overflow Yes
Heap Overflow Yes
simple_integer_calculator Integer Overflow A Yes
- T NULL Pointer Dereference Yes
Out-of-bounds Read Yes
Null Pointer Dereference Yes
Diary_Parser Out-of-bounds Read Yes
Stack Overflow Yes
Heap Overflow Yes
.) Intecer Overflow Yes

electronictrading L .

- Untrusted Pointer Dereference Yes
Use After Free Yes
Enslavednode_chat Heap Overflow Yes
Kaprica_Script_Interpreter Arbitrary Format Srr\ing Yes
- - NULL Pointer Dereference Yes
Double Free Yes
KTY_Pretty_Printer Stack Overflow Yes

Table 1: Summary of the evaluation results on a number of DARPA CGC programs.

Pinpointing Vulnerabilities 34

Evaluation — Performance

2.5%
- _
PREPAVCEn i —
)
-
Z
' —
B L5% [o R .
=
R I e o -
o
L
Z
S 0.5% IR R .
0.0% | | ’_‘ . [| | [’_‘ | H H
T b s v S, B % % B 0 U,y Y. T %
0y Cr "%, %, 7 g7 O, Yy . Y% Sy O, %
Y) { 6@ ‘{) /(/r? 3?/'6‘)@/ e) e 7 't C 1/))(3/
f),?/ r %, /)"b %
% 1

Performance overhead of Ravel’s online components relative to the original FreeBSD system

Pinpointing Vulnerabilities 35

Pinpointing Vulnerabillities

Q&A

http://YueChen.me

Pinpointing Vulnerabilities

36

http://yuechen.me/

Backup Slides

Attack Detection Example

« Typical scenario example:

Attacker guesses Program crashes Victim forks
memory addresses (due to ASLR, DEP, etc.) a new process

Attack

ﬁ
S

Pinpointing Vulnerabilities 38

Attack Detection Example

« Typical scenario example:

Attacker guesses Program crashes Victim forks
memory addresses (due to ASLR, DEP, etc.) a hew process

Attack Fork

/ﬁ
S

Pinpointing Vulnerabilities 39

