
Pinpointing Vulnerabilities

Yue Chen, Mustakimur Khandaker, Zhi Wang

Florida State University

Pinpointing Vulnerabilities 1

Question

• When an attack is detected, how to locate the

underlying vulnerability?

2 Pinpointing Vulnerabilities

Attack Vulnerability

Example

• A control-flow violation is detected at line 6.

• The vulnerability lies at line 4 (buffer overflow).

3 Pinpointing Vulnerabilities

Root Cause

Symptom

Attack Detection v.s. Vulnerability Locating

• Control-flow Integrity (CFI)

– Detect the control-flow graph violation (e.g., on

function returns)

• Taint Analysis

– Detect tainted data being loaded to PC

• System Call Interposition

– Detect abnormal syscalls made by the payload

Pinpointing Vulnerabilities 4

Manifestation of attack rarely coincides

with the vulnerabilities

Ravel – Three Components

• Online attack detector

• Record & replay with instrumentation

• Offline vulnerability locator

Pinpointing Vulnerabilities 5

RAVEL:
Root-cause
Analysis of
Vulnerabilities from
Exploitation
Log

Ravel – Strengths

1. Reliably reproduce real-world attacks in the lab

environment

2. Low online performance overhead

– Locating vulnerabilities is time-consuming

3. Extensible:

– New attack detection and vulnerability locating

techniques can be easily integrated

– (already support a variety of vulnerability locating

techniques)

Pinpointing Vulnerabilities 6

Attack Detection

• Ravel uses existing attack detection methods

– Program crash (or other exceptions)

– Abnormal system calls (sequence/arguments)

– Control-flow integrity violation (to be included)

• New methods can be easily adopted by Ravel

Pinpointing Vulnerabilities 7

Record & Replay

• What to record & replay?

– All the non-deterministic inputs (e.g., network packets)

• Where to record & replay?

– Application interface

– Library interface

– Virtual machine interface

– System call interface

Pinpointing Vulnerabilities 8

Record & Replay

• What to record & replay?

– All the non-deterministic inputs (e.g., network packets)

• Where to record & replay?

– Application interface

– Library interface

– Virtual machine interface

– System call interface

Pinpointing Vulnerabilities 9

More robust against attacks, with low cost

Record

Pinpointing Vulnerabilities 10

System call return values

Userspace data structures modified by syscalls

Data copied from kernel to userspace

Asynchronous signals

Special instructions (e.g., RDTSC)

Synchronization primitives

Replay with Instrumentation

• Some syscalls replayed without real execution

– e.g., gettimeofday

• Some syscalls need to be re-executed

– e.g., mmap

• Replay under a binary translation (BT) engine

– BT collects detailed memory accesses by the target

– Replay distinguishes syscalls made by the target from

those made by BT

Pinpointing Vulnerabilities 11

Vulnerability Locator

Data-flow Analysis

Race Condition

Use-after-free
Double-free

Integer Errors

Pinpointing Vulnerabilities 12

Data-flow Analysis

• Analyze def-use relations between instructions

• Define: writes to a memory address

• Use: reads from a memory address

Pinpointing Vulnerabilities 13

A B
write read

define use

Data-flow Analysis

• Analyze def-use relations between instructions

• Define: writes to a memory address

• Use: reads from a memory address

Pinpointing Vulnerabilities 14

A B

Data-flow Analysis

• Precompute a data-flow graph (DFG)
– DFG: the valid def-use relations in the program

– Our prototype uses dynamic analysis

– Extra relations regarded as violations

• Violation to DFG indicates the vulnerability location
– It could be the def or the use, but which one?

– Refine the results with heuristics

Pinpointing Vulnerabilities 15

Data-flow Analysis

• Precompute a data-flow graph (DFG)
– DFG: the valid def-use relations in the program

– Our prototype uses dynamic analysis

– Extra relations regarded as violations

• Violation to DFG indicates the vulnerability location
– It could be the def or the use, but which one?

– Refine the results with heuristics

Pinpointing Vulnerabilities 16

Data-flow Analysis

• Precompute a data-flow graph (DFG)
– DFG: the valid def-use relations in the program

– Our prototype uses dynamic analysis

– Extra relations regarded as violations

• Violation to DFG indicates the vulnerability location
– It could be the def or the use, but which one?

– Refine the results with heuristics

Pinpointing Vulnerabilities 17

Data-flow Analysis Heuristics

• One def, many uses:

 def is closer to the vulnerability

– Example: buffer overflow

Pinpointing Vulnerabilities 18

use
use

use
Normal

Violating

Data-flow Analysis Heuristics

• One def, many uses:

 def is closer to the vulnerability

– Example: buffer overflow

Pinpointing Vulnerabilities 19

use

def

use

use
Normal

Violating

Data-flow Analysis Heuristics

• One def, many uses:

 def is closer to the vulnerability

– Example: buffer overflow

• Many defs, one use:

 use is closer to the vulnerability

– Example: information leakage

• …

Pinpointing Vulnerabilities 20

use

def

use

use

Data-flow Analysis Heuristics

• One def, many uses:

 def is closer to the vulnerability

– Example: buffer overflow

• Many defs, one use:

 use is closer to the vulnerability

– Example: information leakage

• …

Pinpointing Vulnerabilities 21

use

def

use

use

Integer Errors

• Focus on common integer errors

– Start from common functions/instructions that take

integer operands

• E.g., memcpy, recvfrom; movs, stos…

– Search backwards for integer errors

• Example:
memcpy (void * destination, const void * source, size_t num);

Search from num backwards for integer errors.

Pinpointing Vulnerabilities 22

Integer Errors

• Assignment truncation (e.g., 0x12345678 → 0x5678)

– To detect: assign from a longer to a shorter integer type

• Integer overflow/underflow (e.g., 0xFFFFFFFF + 1)

– To detect: check the RFLAGS register

• Signedness error (e.g., unsigned_int_var = signed_int_var)

– To detect: collect hints from functions and instructions

• Instructions: jg, jge, ja, jae, cmovg, cmova, idiv, div, etc.

• Functions: memmove, strncat, etc.

• Benign integer errors?

– Related to a reported vulnerability!

Pinpointing Vulnerabilities 23

Integer Errors

• Assignment truncation (e.g., 0x12345678 → 0x5678)

– To detect: assign from a longer to a shorter integer type

• Integer overflow/underflow (e.g., 0xFFFFFFFF + 1)

– To detect: check the RFLAGS register

• Signedness error (e.g., unsigned_int_var = signed_int_var)

– To detect: collect hints from functions and instructions

• Instructions: jg, jge, ja, jae, cmovg, cmova, idiv, div, etc.

• Functions: memmove, strncat, etc.

• Benign integer errors?

– Related to a reported vulnerability!

Pinpointing Vulnerabilities 24

Use-after-free and Double-free

• Ravel instruments memory allocation/free

functions to track the memory life-time

• Use-after-free: freed memory is accessed again

• Double-free: memory freed more than once

without re-allocation

Pinpointing Vulnerabilities 25

Race Condition

• When race condition happens, the execution

deviates from the recorded one

– as we do not implement strict R&R

• When detected, use the happens-before relation

to check for race conditions

Pinpointing Vulnerabilities 26

Implementation

• Record & replay:

– FreeBSD release 10.2

– Kernel modification + small user-space utility

• Vulnerability locator:

– Extended from Valgrind

Pinpointing Vulnerabilities 27

Evaluation – Effectiveness

• Buffer overflow

• Integer errors

• Information leakage

• Use-after-free and double-free

• Format string vulnerabilities

Pinpointing Vulnerabilities 28

CVE-2013-2028 of Nginx

Pinpointing Vulnerabilities 29

CVE-2013-2028 of Nginx

Pinpointing Vulnerabilities 30

signed unsigned

signed comparison

CVE-2013-2028 of Nginx

Pinpointing Vulnerabilities 31

signed unsigned larger than expected

signed comparison

CVE-2013-2028 of Nginx

Pinpointing Vulnerabilities 32

signed unsigned larger than expected

buffer overflow

signed comparison

CVE-2013-2028 of Nginx

Pinpointing Vulnerabilities 33

signed unsigned larger than expected

buffer overflow

signed comparison Ravel

Data-flow
Violation

Signedness
Conflict

Memory
Exception

Evaluation – Effectiveness

• More examples are in the paper (Heartbleed, etc.)

Pinpointing Vulnerabilities 34

Evaluation – Performance

Performance overhead of Ravel’s online components relative to the original FreeBSD system

Pinpointing Vulnerabilities 35

Pinpointing Vulnerabilities

Q&A

Pinpointing Vulnerabilities 36

http://YueChen.me

http://yuechen.me/

Backup Slides

Pinpointing Vulnerabilities 37

Attack Detection Example

• Typical scenario example:

Pinpointing Vulnerabilities 38

Attack

Attacker guesses
memory addresses

Program crashes
(due to ASLR, DEP, etc.)

Victim forks
a new process

Attack Detection Example

• Typical scenario example:

Pinpointing Vulnerabilities 39

Attack Fork

Attacker guesses
memory addresses

Program crashes
(due to ASLR, DEP, etc.)

Victim forks
a new process

